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Project Objective

The overall objective of this project is to develop, test, and validate a general drag model for 
multiphase flows in assemblies of non-spherical particles by a physics-informed deep 
machine learning (PIDML) approach using artificial neural network (ANN). 
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CFD Software



Project Status
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Motivation
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Alobaid, F., Almohammed, N., Farid, M.M., May, J., Rößger, P., Richter, A. and Epple, B., 2022. Progress in CFD simulations of 

fluidized beds for chemical and energy process engineering. Progress in Energy and Combustion Science, 91, p.100930.

1. Energy industry

• Gasifiers

• Combustion

2. Food industry

3. Chemical process



Motivation

• The drag coefficient primarily depends on
• Shape

• Reynold number

• The variations are highly non-linear

• Single correlation cannot cover all the 
particles

• Requires more sophisticated modelling 
such as Neural network
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𝐶𝐷 =
24
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𝑅𝑒 + 5.378 exp(6.2122 𝜓)

Current State-of-Art

• Haider & Levenspiel (1989)

• Yow et al. (2005)

• Hölzer & Sommerfeld (2008)

• He & Tafti (2019)

• Yan et al. (2019)
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Current State-of-Art

• Haider & Levenspiel (1989)

• Yow et al. (2005)

• Hölzer & Sommerfeld (2008)

• He & Tafti (2019)

• Yan et al. (2019)
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Nearest Particles’ location



Current State-of-Art

• Haider & Levenspiel (1989)

• Yow et al. (2005)

• Hölzer & Sommerfeld (2008)

• He & Tafti (2019)

• Yan et al. (2019)
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BPNN RBFNN

Knowledge gap: A drag model which can effectively discriminate shape of the particles and easy to apply in the current 

MFiX framework 



Data Collected
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Digitalized several more papers/reports 

(> 4K data points)

• Created a combined spreadsheet with 
data of drag coefficients at identified 
features

• Performed preliminary data analysis of 
feature importance and feature correlation

• Conducted a systematic experimental 
analysis on various data configurations

Irregular-shaped Particles (Total: 1894)
* Particle shape and settling velocity are retrieved from David, 2017. Other parameters including 

Re and Cd are calculated ourselves to be consistant with other data

Regular-shaped Particles (Total: 2277)



Features for Neural Network
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• Reynold number (Re)

• Sphericity (𝜓)

• Fixed Crosswise Sphericity (𝜓⊥)

• Fixed Lengthwise Sphericity (𝜓∥)

• Aspect ratio (AR)

• Density Ratio 
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Particle Orientation Study

Methodology and Assumptions 

1. Panel method to solve aerodynamics

2. Low Reynolds number

3. Flow leaves particle smoothly

Observations

1. Particle density impacts the 

orientations

2. Low sphericity particles 

fluctuates 12



Mixture of Experts (MoE) Architecture

Single-Model DNN

Haider & Levenspiel corr

Chien corr

Holzer & Sommerfeld corr

Yow et al. corr

Input features

𝑅𝑒, 𝑅𝜌, 𝜙, 𝐴𝑅, 𝜑∥, 𝜑⊥

Gating 

network

Prediction

Assigns a 

confidence score for 

each regressor 

based on the range 

of input data 

Final predictions

Prediction

Prediction

Prediction

Prediction

Drag Coefficient Correlation-aided Deep Neural 
Network (DCC-DNN)

RMSE MRAE 𝑹𝟐

25.98 17.05 0.8569 13
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Integration with CFD (MFiX)

• ~11000 particles cost approximately 5 
seconds to complete the DEM loop.

• File writing takes place only once

• CFD of lab scale setup is practical

• Large scale can be time consuming

DEM Loop

Particle data

MFiX

Python 

loop

Drag value

Common 

block

Usr_drag

1. MFiX is written on Fortran

2. Neural network model is written on 

Python

3. Available wrappers cannot work with 

advance libraries such as Pytorch.

https://www.netl.doe.gov/sites/default/files/2020-

11/UCR_HBCU_OMI/Dirk%20VanEssendelft%20Presentation-

2020UCRHBCU_Kickoff_MFIXAI_Overview.pdf
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DNN



CFD Validation
Settling of Single Non-Spherical Particle 
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Experiments Simulations

Song, X., Xu, Z., Li, G., Pang, Z., & Zhu, Z. (2017). A new model for predicting drag coefficient and settling velocity of spherical 

and non-spherical particle in Newtonian fluid. Powder Technology, 321, 242-250.

Drag Predictions error < 30 %

1. DEM simulation

2. Gravity 

3. Particle velocity is 

monitored

1. Non-spherical particle

2. Glycerin and water

3. Al, Ti and Steel

4. Terminal velocity 

measurement
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Assemblies of particles

Sedimentation Volcanic debris

https://volcanoes.usgs.gov/volcanic_ash/ash_gas_vog.h

tml
https://physics.aps.org/articles/v10/40

Fluidized Bed

Vollmari, K., Jasevičius, R. and Kruggel-Emden, H., 2016. Experimental 

and numerical study of fluidization and pressure drop of spherical and 

non-spherical particles in a model scale fluidized bed. Powder 

Technology, 291, pp.506-521. 17



Effect of Volume Fractions on Drag

• Experimental studies typically do 

not report drag of a particle in a 

group.

• CFD simulations are carried out 

to generate drag data of particles 
found in beds.

• Re: 1~500

Mahyawansi, P. and Lin, C.X., 2021, August. An Investigation of the Effects of Volume Fraction on Drag Coefficient of Non-Spherical Particles Using PR-DNS. In Fluids 

Engineering Division Summer Meeting (Vol. 85284, p. V001T02A024). American Society of Mechanical Engineers.
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Effect of Volume Fractions on Drag for Re = 500

𝜓
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Modelling Volume fraction

𝑪𝒅 = 𝑪𝒅𝟎 𝟏 − 𝝐𝒔
𝒏

Di Felice, R., 1994. The voidage function for fluid-particle interaction systems. International journal of multiphase flow, 20(1), pp.153-159.

𝝓𝒗 n

Re 0.2683 0.3864 0.6038

Single

Particle 0.2683 0.3864 0.6038

10 40.57 83.791 365.266 28.0152 0.281444 1.15217 5.089824

100 13.9877 38.582 57.522 3.7008 1.010626 2.465328 5.43816

500 7.6399 12.317 28.357 1.3449 1.32031 2.329059 6.042577

1000 7.5487 12.86072 25.744 1.2051 1.394606 2.489914 6.068513

𝐶𝑑 = 𝐶𝑑0𝜙𝑣
𝑛

y = 15.734x2 + 0.5337x - 0.0008
R² = 1
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SOLID VOLUME FRACTION

If 𝜙𝑣 → 0,  then n → 0

𝝓𝒗 0 0.2683 0.3864 0.6038

𝐧 0 1.270517 2.559466 6.056596

𝐹𝑜𝑟 𝑅𝑒 > 10, 𝑛 ≈ 𝑓(𝜙𝑣)

𝑛 ≈ 𝑓(𝜙𝑣, 𝑅𝑒, 𝜓)

n = 15.734ϕ𝑣
2 + 0.5337ϕ𝑣− 0.0008

n

For Re < 10, 𝑛 = −0.0008 + 0.532𝜙𝑣 + 15.73𝜙𝑣
2
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Experimental Data

Vollmari, K., Jasevičius, R. and Kruggel-Emden, H., 2016. Experimental and numerical study of fluidization and pressure drop 

of spherical and non-spherical particles in a model scale fluidized bed. Powder Technology, 291, pp.506-521. 21



Performance Metrics

Vollmari, K., Jasevičius, R. and Kruggel-Emden, H., 2016. Experimental and numerical study of fluidization and pressure drop 

of spherical and non-spherical particles in a model scale fluidized bed. Powder Technology, 291, pp.506-521.

Pressure drop 

Frequency Distribution

22



DEM Simulations of Cubic Particles

Vg = 0.7 m/s Vg = 1.2 m/s Vg = 1.6 m/s Vg = 2.4 m/s

23



Results
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Future Task
Modelling Volume Fraction Using Neural Network

Predicted vs. Actual scatter plot

25

Deep Neural Network 1

(Mixture-of-Experts)

𝑅𝑒, 𝐴𝑅, 𝜓, 𝑅𝜌, 𝜓⊥, 𝜓||

𝐶𝑑0 of a single particle

Deep Neural Network 2

𝐶𝑑0, 𝜙𝑣, 𝑅𝑒 𝑎𝑛𝑑 𝜓

𝐶𝑑 for group of particles



Conclusions

• Drag force on non-spherical particles depends on shape factor, inertia and Reynold 
number.

• Fixed crosswise and lengthwise sphericity is effective in discriminating the particles.

• Gated DNN model is integrated with MFiX to model particle drag.

• Single particle simulations with new drag model shows excellent predications.

• Solid volume fraction effect can be accounted using Di Felice’s equation.

• DEM simulation using new drag model predicted fluidization of cubic particles.

• The pressure drop predictions across the bed are reasonably accurate.

• The pressure drop at the beginning of fluidization is under-estimated.

• The solid volume fraction effect are now accounted in the second level of DNN model.

26
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Regular vs. Irregular Shaped Particles

33

Regular shaped particles:

• A particle of geometric 
parameters such as volume and 
surface area that can be 
mathematically determined

Irregular shaped particles:

• An arbitrary random particle 
whose geometric parameters 
cannot be precisely calculated

Regular-shaped 

Particles

Irregular-shaped 

Particles1

1Dioguardi, F., D. Mele, and P. Dellino. "A new one‐equation model of fluid drag for irregularly shaped 

particles valid over a wide range of Reynolds number." Journal of Geophysical Research: Solid Earth 

123, no. 1 (2018): 144-156.


