Washington University in St. Louis

JAMES MCKELVEY SCHOOL OF ENGINEERING

Titanium-Cerium Electrode-Decoupled Redox Flow Batteries Integrated With Fossil Fuel Assets For Load-Following, Long-Duration Energy Storage

Project FE0032011 presented by: **Ben Kumfer** Dept. Energy, Environmental & Chemical Engineering Washington University in St. Louis in collaboration with GINERLABS neren MISSOURI PI: Vijay Ramani (WUSTL), Shri Sankarasubramanian (UTSA),

Matthew Kastelic, Judith Lattimer (Giner), Tom Callahan (Ameren MO)

NETL FECM R&D Spring Project Review Meeting

April 20, 2023

Benefits of RFB Integration with Fossil Assets

- Increase value of existing fossil plants
- Enhance flexibility in operation
- Achieve storage/discharge capacity across multiple time scales
- Reduce wear due to cycling, extend life
- Increase efficiency, reduce emissions
- Take advantage of grid market opportunities to increase revenue
- Eliminate stranded renewable electricity
- Support a stable, reliable, resilient electricity grid

Redox Flow Battery (RFB)

Washington University in St. Louis JAMES MCKELVEY SCHOOL OF ENGINEERING

Advantages of RFBs

- Energy and power are decoupled
 => greater design flexibility
 => lower scale-up costs
 - Rapid response
 - Suitable for multiple time scales (minutes – weeks)
 - Grid-scale demonstration projects
 underway (Vanadium type)

Washington University in St. Louis JAMES MCKELVEY SCHOOL OF ENGINEERING

Ti-Ce electrode decoupled RFB

- Produced with H₂SO₄- or CH₃SO₃H-supported electrolyte
- Anion: SO_4^{-2} or $CH_3SO_3^{-1}$

SHE: Standared Hydrogen Electrode

Advantages of Ti-Ce System

Nominal Cell Voltage > 1V

No phase change, solids precipitation

Minimal potential for H₂ or O₂ evolution

Advantages of Ti-Ce System

Abundant active elements

https://pubs.usgs.gov/fs/2002/fs087-02/

□ Lower material costs vs. All-V and V-Ce

□ Proven reserves for >300x the total world electricity production (25,000 TWh/year)

Anion Exchange Membrane (AEM)

- □ Key enabling technology
- Highly permselective to maintain separation of Ti and Ce species and prevent capacity fade

Anion Exchange Membrane (AEM)

Poly(ether ketone) doped with metal oxide nanoparticles to improve permselectivity

Made from 100cm² to roll-to-roll

Performance Test Results

Test Cell

>3 day charge retention

Cycle Performance Results

Project Objectives

Overall Goal:

To advance the integration of a titanium-cerium electrode-decoupled redox flow battery (Ti-Ce ED-RFB) system with conventional fossil-fueled power plants through detailed technical and economic system-level studies and component scale-up and R&D.

Objective 1:

- Increase TRL from 4 to 5, by building and demonstrating a ED-RFB cell stack, with 3rd party validation, with following performance characteristics:
 - 0.2 A/cm2 current density
 - 400 cm2 cell size
 - Capable of 48-hr cycle duration
 - <5% capacity loss in 1- week standby</p>

Project Objectives, Cont.

Objective 2:

- Demonstrate a pathway to achieve following cost targets for a utility-scale system:
 - Capex values of < \$500/kW (power) and < \$50/kWh (energy)
 - Levelized cost of storage (LCOS) of < \$0.05/kWh-cycle

Objective 3:

• Reveal and quantify the benefits of co-locating the storage system within the fenceline of a fossil plant.

Objective 4:

• Enable path to commercialization through market research, gap assessment, and technology maturation and commercialization planning

RFB scale-up to 400cm² active area

RFB scale-up to 400cm² active area

- Fabrication of scaled-up 400cm² active area RFB cell and stack complete.
- Assembly ongoing for leak testing and commissioning

Giner's flow battery testing

- Provides the ability to control/measure:
 - Voltage and current
 - Analyte and catholyte flow rates
 - Temperature
- Custom software enables:
 - Recording of cell voltage/current
 - Measuring of high frequency resistance (HFR)
 - Automated polarization curves

TEA Design Basis – Case Summary

Fossil Plant	Scenario A: No Storage	Scenario B: Short Duration	Scenario C: Intermediate Duration	Scenario D: Long Duration
1. Reference NGCC NETL Baseline Case 31A	1A	1B	1C	1D
2. Reference NGCC w/CDR NETL Baseline Case 31B	2A	2B	2C	2D
3 VEC* CT (simple cycle)	3A	3B	3C	3D
4. VEC NGCC	4A	4B	4C	4D

^{*}VEC: Venice Energy Center (Ameren MO)

Short Duration (0-2 hours): grid services (frequency & voltage support), peak load, arbitrage

Intermediate Duration (2-24 hours): reduce daily plant cycling, arbitrage

Long Duration (24-48 hours): multi-day weather or unplanned outage events

TEA Design Basis – Power Plant Specifications

	Ref. NGCC	l					
Parameter	Case 1	e 1 Case 2 Case 3		Case 4			
Combust. Turbine gross output (MWe)		2 x 238	2	2 x 169			
HRSG Steam Cycle (psig/°F/°F)	2,393	8/1,085/1,085	N/A	1772/1050/1050			
Steam Turbine Power (MWe)	263	213	N/A	185			
CO ₂ recovery load (MWe)	N/A	28		N/A			
Bal. of Plant Loads (MWe)	14	16	18	19			
Plant Gross (MW)	740	690	338	523			
Plant Net (MW)	727	646	320	504			
LHV Plant Efficiency (%)	59.4	52.8	35.9	53.6			
LHV Heat Rate (Btu/kWh)	5,743	6,462	9,493	6,363			
LHV CT Efficiency (%)		39.0		35.9			
NOx Control	LN	VB & SCR	LNB	LNB & SCR			
CT Turbine Specifications							
Туре]	F-Frame	F-Fram	F-Frame (501F-D2)			
Outlet Temperature (°F)	1,156			1,116			
Inlet Temperature (°F)	2470			2300			
Pressure Ratio	19.5			15.0			
Isentropic Efficiency (%)		87		87			
Plant Turndown Min Load (%)	22.0	N/A	50.0	22.0			
Ramp Rate (MW/min)	80.0	N/A	tbd	tbd			
Startup Time, RR Hot (min)	25	> 25	tbd	tbd			
Electrical Specifications							
Grid Interconnect (kV)		345		138			

derived quantities

18

ASPEN Process Model

RFB Process Model Status

TEA Design Basis – Baseline Load Profile

Hypothetical power generation fleet located in Midwest consisting of

- 600 MW of solar (nameplate capacity)
- 1200 MW of wind (nameplate capacity)
- 1200 MW of baseline nuclear.

TEA Design Basis – Baseline Load Profile

Battery Sizing – Medium Duration Storage (max 24 hrs)

scenario:

- batteries solely responsible for daily cycles
- fossil ramps according to multi-day load trends

Fossil Plant / Size	Battery Max Power	Battery Capacity			
	(MW)	(MW-hr)			
1,000 MW	300	3,500			
NETL Baseline NGCC: 727 MW	218	2,545			
VEC NGCC: 504 MW	151	1,764			

Battery Sizing – Medium Duration Storage (max 24 hrs)

Electrolyte Storage Tank Sizing

Assumptions:

- Operating voltage = 1 V
- Electrolyte concentration = 1 M

=> 10 gallons/kWhr (per electrolyte)

Example:

Dalian Flow Battery Energy Storage Peak-Shaving Power Station 100 MW/400 MWh

Rongke Power Co. Ltd.

https://english.cas.cn/newsroom/research_news/chem/202205/t20220531_306054.shtml

Ameren Venice Energy Center

1,000 MWh Installation

10,000,000 gal, Qty 100 100,000 gal tanks (x2) (Diam 30 ft, Ht 19 ft)

Installed Cost Analysis

<u>Reference Methodology:</u>

2022 Grid Energy Storage Technology Cost and Performance Assessment, PNNL-33283

Our model matches DOE's all-V RFB model – Power – 1MW; Duration – 4h; 1 molar electrolyte solution concentration; 100 mW/cm² power density. Same PCS, ESS and integrator margins assumed.

Ti-Ce RFB cost estimates (supplier cost)

- no optimizing assumptions

	1MW/4MWh	10MW/40MWh
DC system (\$/kWh)	267	248
AC installed cost (\$/kWh)	401	345

~\$80-\$100/kWh difference compared to all-V RFB

Thank you

kumferb@wustl.edu

Acknowledgment: This material is based upon work supported by the Department of Energy National Energy Technology Lab under Award Number(s) DE-FE0032011.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PNNL All Vanadium Installed Cost Analysis

				1 MW							10 MW								
				2 hr 4 hr		hr	10 hr		24 hr		2 hr		4 hr		10 hr		24 hr		
				2021	2030	2021	2030	2021	2030	2021	2030	2021	2030	2021	2030	2021	2030	2021	2030
		age em	DC Storage Block (\$/kWh)	\$369.30	\$306.96	\$276.59	\$229.89	\$220.96	\$183.66	\$199.32	\$165.67	\$351.72	\$292.34	\$263.42	\$218.95	\$210.44	\$174.91	\$189.83	\$157.79
		Stor	DC Storage BOS (\$/kWh)	\$73.86	\$55.15	\$55.32	\$41.31	\$44.19	\$33.00	\$39.86	\$29.77	\$70.34	\$52.53	\$52.68	\$39.34	\$42.09	\$31.43	\$37.97	\$28.35
	ESS		Power Equipment (\$/kW)	\$154.86	\$137.00	\$154.86	\$137.00	\$154.86	\$137.00	\$154.86	\$137.00	\$133.00	\$117.65	\$133.00	\$117.65	\$133.00	\$117.65	\$133.00	\$117.65
			C&C (\$/kW)	\$40.00	\$29.87	\$40.00	\$29.87	\$40.00	\$29.87	\$40.00	\$29.87	\$7.80	\$5.82	\$7.80	\$5.82	\$7.80	\$5.82	\$7.80	\$5.82
			Systems Integration (\$/kWh)	\$79.59	\$67.53	\$56.34	\$47.81	\$42.40	\$35.97	\$36.97	\$31.37	\$73.58	\$62.43	\$52.55	\$44.59	\$39.93	\$33.88	\$35.03	\$29.72
			EPC (\$/kWh)	\$93.03	\$78.93	\$65.54	\$55.61	\$49.05	\$41.62	\$42.64	\$36.18	\$84.91	\$72.04	\$60.58	\$51.40	\$45.98	\$39.01	\$40.30	\$34.20
			Project Development (\$/kWh)	\$106.98	\$90.77	\$75.38	\$63.96	\$56.41	\$47.87	\$49.04	\$41.61	\$97.64	\$82.85	\$69.66	\$59.11	\$52.88	\$44.87	\$46.35	\$39.33
			Grid Integration (\$/kW)	\$30.94	\$26.25	\$30.94	\$26.25	\$30.94	\$26.25	\$30.94	\$26.25	\$25.00	\$21.21	\$25.00	\$21.21	\$25.00	\$21.21	\$25.00	\$21.21
			Total Installed Cost (\$/kWh)	\$835.66	\$695.90	\$585.62	\$486.85	\$435.59	\$361.42	\$377.25	\$312.65	\$761.08	\$634.53	\$540.34	\$449.55	\$407.89	\$338.57	\$356.39	\$295.41
			Total Installed Cost (\$/kW)	\$1,671	\$1,392	\$2,342	\$1,947	\$4,356	\$3,614	\$9,054	\$7,504	\$1,522	\$1,269	\$2,161	\$1,798	\$4,079	\$3,386	\$8,553	\$7,090

https://www.pnnl.gov/sites/default/files/media/file/ESGC%20Cost%20Performance%20Report%202022%20PNNL-33283.pdf