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Benefits of RFB Integration with Fossil Assets

• Increase value of existing fossil plants

• Enhance flexibility in operation

• Achieve storage/discharge capacity across multiple time scales

• Reduce wear due to cycling, extend life

• Increase efficiency, reduce emissions

• Take advantage of grid market opportunities to increase revenue

• Eliminate stranded renewable electricity

• Support a stable, reliable, resilient electricity grid
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Redox Flow Battery (RFB)
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Advantages of RFBs
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• Energy and power are decoupled 

=> greater design flexibility 

=> lower scale-up costs 

• Rapid response

• Suitable for multiple time scales 

(minutes – weeks)

• Grid-scale demonstration projects 

underway (Vanadium type)



Ti-Ce electrode decoupled RFB

Ce4+ + e− ↔ Ce3+ 

(E0 = 1.61V vs. SHE)
Ti4+ (as TiO2+) + e− ↔ Ti3+ 

(E0 = 0.19V vs. SHE)

Anion Exchange Membrane (AEM)

SHE: Standared Hydrogen Electrode

• Produced with H2SO4- or 
CH3SO3H-supported electrolyte

• Anion: SO4
-2 or CH3SO3

-
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❑ Nominal Cell 

Voltage > 1V

❑ No phase change, 

solids precipitation

❑Minimal potential 

for H2 or O2

evolution
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Advantages of Ti-Ce System



❑ Abundant active elements

❑ Lower material costs vs. All-V and V-Ce

❑ Proven reserves for >300x the total world electricity production (25,000 TWh/year) 

https://pubs.usgs.gov/fs/2002/fs087-02/
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Advantages of Ti-Ce System



❑ Key enabling technology 

❑ Highly permselective to maintain separation of Ti and Ce 

species and prevent capacity fade
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Anion Exchange Membrane (AEM)

Highly selective

Extremely stable in ED-

RFB actives



Made from 100cm2 to 

roll-to-roll

Anion Exchange Membrane (AEM)

❑ Poly(ether ketone) doped with metal oxide nanoparticles to 

improve permselectivity
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Performance Test Results
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>3 day charge retention

Test Cell



Cycle Performance Results
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Long cycle life

56 days
24 hrs / cycle



Overall Goal:

To advance the integration of a titanium-cerium electrode-decoupled redox flow battery (Ti-Ce 

ED-RFB) system with conventional fossil-fueled power plants through detailed technical and 

economic system-level studies and component scale-up and R&D.

Objective 1:

• Increase TRL from 4 to 5, by building and demonstrating a ED-RFB cell stack, with 3rd party 

validation, with following performance characteristics:

– 0.2 A/cm2 current density

– 400 cm2 cell size

– Capable of 48-hr cycle duration

– <5% capacity loss in 1- week standby

Project Objectives
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Objective 2:

• Demonstrate a pathway to achieve following cost targets for a utility-scale 

system:

– Capex values of < $500/kW (power) and < $ 50/kWh (energy)

– Levelized cost of storage (LCOS) of < $0.05/kWh-cycle

Project Objectives, Cont.
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Objective 3:

• Reveal and quantify the benefits of co-locating the storage system within the fence-

line of a fossil plant.

Objective 4:

• Enable path to commercialization through market research, gap assessment, and 

technology maturation and commercialization planning



One UTSA Circle • San Antonio, Texas 78249

RFB scale-up to 400cm2 active area



One UTSA Circle • San Antonio, Texas 78249

RFB scale-up to 400cm2 active area

Monopolar flowfield Bipolar flowfield
Copper current collectors

Anodized Aluminum 
endplates

• Fabrication of scaled-up 400cm2 active area 

RFB cell and stack complete. 

• Assembly ongoing for leak testing and 

commissioning



Giner’s flow battery testing
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• Provides the ability to 
control/measure:

• Voltage and current
• Analyte and catholyte flow rates
• Temperature

• Custom software enables:
• Recording of cell voltage/current
• Measuring of high frequency 

resistance (HFR)
• Automated polarization curves Pump

Temperature
controller

Stack

To electrolyte tanks

Vent

Power supply

Workstation with 
custom software



TEA Design Basis – Case Summary

17

Fossil Plant Scenario A:

No Storage

Scenario B:

Short 

Duration

Scenario C:

Intermediate 

Duration

Scenario D:

Long 

Duration

1. Reference NGCC 

NETL Baseline Case 31A
1A 1B 1C 1D

2. Reference NGCC w/CDR

NETL Baseline Case 31B
2A 2B 2C 2D

3  VEC* CT (simple cycle) 3A 3B 3C 3D

4.  VEC NGCC 4A 4B 4C 4D

*VEC: Venice Energy Center (Ameren MO)

Short Duration (0-2 hours): grid services (frequency & voltage support), peak load, arbitrage

Intermediate Duration (2-24 hours): reduce daily plant cycling, arbitrage

Long Duration (24-48 hours): multi-day weather or unplanned outage events
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Parameter
Ref. NGCC VEC

Case 1 Case 2 Case 3 Case 4

Combust. Turbine gross output (MWe) 2 x 238 2 x 169

HRSG Steam Cycle (psig/oF/oF) 2,393/1,085/1,085 N/A 1772/1050/1050

Steam Turbine Power (MWe) 263 213 N/A 185

CO2 recovery load (MWe) N/A 28 N/A

Bal. of Plant Loads (MWe) 14 16 18 19

Plant Gross (MW) 740 690 338 523

Plant Net (MW) 727 646 320 504

LHV Plant Efficiency (%) 59.4 52.8 35.9 53.6

LHV Heat Rate (Btu/kWh) 5,743 6,462 9,493 6,363

LHV CT Efficiency (%) 39.0 35.9

NOx Control LNB & SCR LNB LNB & SCR

CT Turbine Specifications

Type F-Frame F-Frame (501F-D2) 

Outlet Temperature (oF) 1,156 1,116

Inlet Temperature (oF) 2470 2300

Pressure Ratio 19.5 15.0

Isentropic Efficiency (%) 87 87

Plant Turndown Min Load (%) 22.0 N/A 50.0 22.0

Ramp Rate (MW/min) 80.0 N/A tbd tbd

Startup Time, RR Hot (min) 25 > 25 tbd tbd

Electrical Specifications

Grid Interconnect (kV) 345 138

TEA Design Basis – Power Plant Specifications

derived quantities 
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ASPEN Process Model

NGCC Baseline Case 31A
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RFB Process Model Status



TEA Design Basis – Baseline Load Profile
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Hypothetical power generation fleet located in Midwest consisting of 

• 600 MW of solar (nameplate capacity)

• 1200 MW of wind (nameplate capacity)

• 1200 MW of baseline nuclear.



TEA Design Basis – Baseline Load Profile
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Battery Sizing – Medium Duration Storage (max 24 hrs)
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Fossil Plant / Size Battery Max Power

(MW)

Battery Capacity

(MW-hr)

1,000 MW 300 3,500

NETL Baseline NGCC:    727 MW 218 2,545

VEC NGCC:    504 MW 151 1,764

scenario:
• batteries solely responsible 

for daily cycles
• fossil ramps according to 

multi-day load trends



Battery Sizing – Medium Duration Storage (max 24 hrs)
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Electrolyte Storage Tank Sizing
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Assumptions:

• Operating voltage =  1 V
• Electrolyte concentration =  1 M

=> 10 gallons/kWhr (per electrolyte)

https://english.cas.cn/newsroom/research_news/chem/202205/t20220531_306054.shtml

Example:
Dalian Flow Battery Energy Storage 
Peak-Shaving Power Station
100 MW/400 MWh

Rongke Power Co. Ltd.

https://english.cas.cn/newsroom/research_news/chem/202205/t20220531_306054.shtml


Ameren Venice Energy Center



1,000 MWh Installation 10,000,000 gal,   Qty 100  100,000 gal tanks (x2) 
(Diam 30 ft, Ht 19 ft)  

For illustrative purposes only



Installed Cost Analysis
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Ti-Ce RFB cost estimates (supplier cost) 

– no optimizing assumptions 

Our model matches DOE’s all-V RFB model –

Power – 1MW; Duration – 4h; 1 molar electrolyte solution 

concentration; 100 mW/cm2 power density.

Same PCS, ESS and integrator margins assumed. 

1MW/4MWh 10MW/40MWh

DC system ($/kWh) 267 248

AC installed cost ($/kWh) 401 345

~$80-$100/kWh difference compared to all-V RFB

Reference Methodology:
2022 Grid Energy Storage Technology Cost and Performance Assessment, PNNL-33283



Thank you

kumferb@wustl.edu
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PNNL All Vanadium Installed Cost Analysis
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https://www.pnnl.gov/sites/default/files/media/file/ESGC%20Cost%20Performance%20Report%202022%20PNNL-33283.pdf
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