2023 FECM / NETL Spring R&D Project Review Meeting Project Update - DE-FE0031931 (Emissions Control)

Facilitating Implementation of High-Volume Fly Ash Use in Precast Concrete Construction to Increase Beneficial Utilization

Matthew J. Gombeda, PhD (PI)

Assistant Professor of Civil Engineering Department of Civil, Architectural and Environmental Engineering Illinois Institute of Technology Chicago, IL

Thursday April 20, 2023

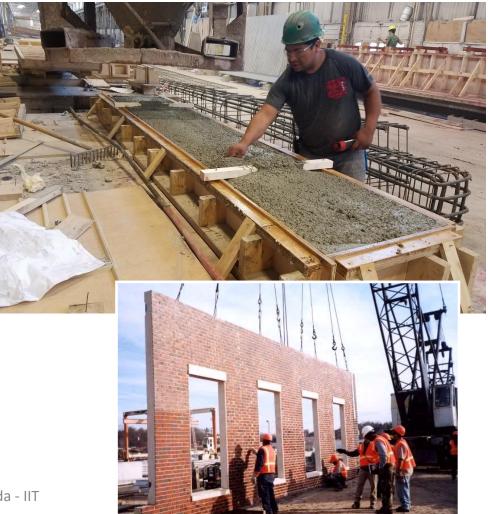
Review of Project Background and Motivation

Fly ash (FA), a <u>coal combustion residual</u> (CCR), is one of the most commonly used <u>supplementary cementitious materials</u> (SCMs).

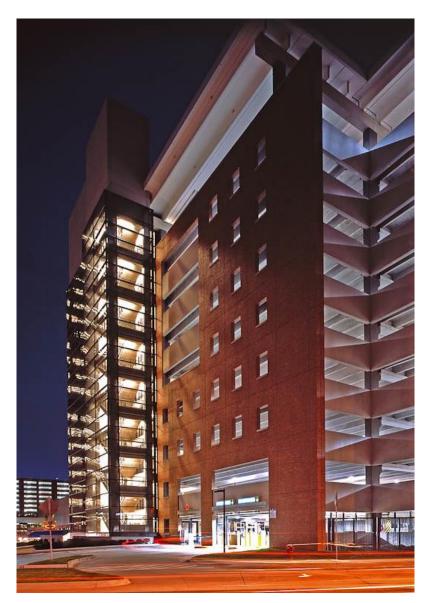
FA particles carried out of coal combustion chamber by exhaust gases and subsequently filtered out

<u>Two main classifications</u>: Class $F \rightarrow FA$ w/ pozzolan properties Class $C \rightarrow FA$ w/ pozzolan & cementitious properties

Often used as a [partial] replacement of conventional Portland cement


 \rightarrow With restrictions in precast construction

Precast Concrete \rightarrow The process of fabricating concrete components in a location other than their final position.

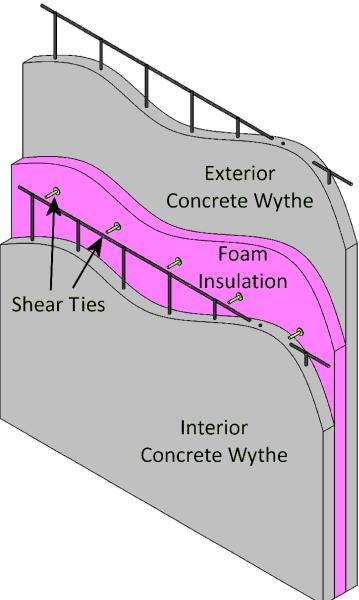

<u>Tilt-Up</u> (site prefabricated)

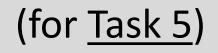
Factory Precast

Precast Concrete Building Systems

- + Cost Effective
- + Energy Efficient
- + High Quality Control
- + Rapid Construction
- + New Technology

Parking Structures / Office Buildings Residential / Manufacturing




Insulated precast concrete wall panels have grown in popularity due to **enhanced thermal properties**.

+ Insulating foam layer is sandwiched between two concrete wythes

+ Shear ties are used to connect the wythes and develop composite action

+ Further sustainability will be achieved using HVFA concrete wythes in conjunction with insulating properties.

HVFA use is more feasible in cast-in-place (CIP) concrete construction than **precast** concrete due to specialty **structural performance requirements**.

Development of high early strength is crucial for precast components

Maximizes operational efficiency of the facility by turning over casting beds rapidly

Components often stripped from formwork within ~24 hours of fresh concrete placement

Second photo source: "QUIKLIFT™ DTA Installation to Stripping (Precast Double Tee) by ALP Supply (formerly Patterson)" https://www.youtube.com/watch?v=sBCznhGwfFY&ab_channel=ALPSupply

Project Objectives and Expected Outcomes

1) Increase fly ash beneficial use by at least 15% in the precast concrete industry

2) Maintain or exceed stringent structural property requirements

 (e.g., compressive strength at initial prestress, modulus of rupture, etc.)
 Ex: <u>3500 psi compressive strength</u> typical at initial prestress (~24 hrs.)

3) Exhibit little or no additional cost relative to conventional mixtures

4) Mitigate detrimental environmental consequences inadvertently caused by increased beneficial use

5) Facilitate diversion and harvesting of large fly ash quantities from landfills or impoundments

6) New design guidelines and code provisions for sustainability requirements for concrete mix designs

Project Tasks

Task 2 - Assessment of the state-of-the-art practices and initial materials procurement (100% Complete)

Task 3 - Material formulation development (85% Complete)

Task 4 - Performance testing of concrete mixtures (80% Complete)

Task 5 - Design, fabrication, and experimental testing of full-scale specimens (15% Complete)

Task 6 - Environmental impact study and life cycle assessments (85% Complete)

Progress to Date

Development of **Optimized HVFA Binders** (Task 3)

Includes formulations for 40% fresh Class C and F & harvested F fly ashes

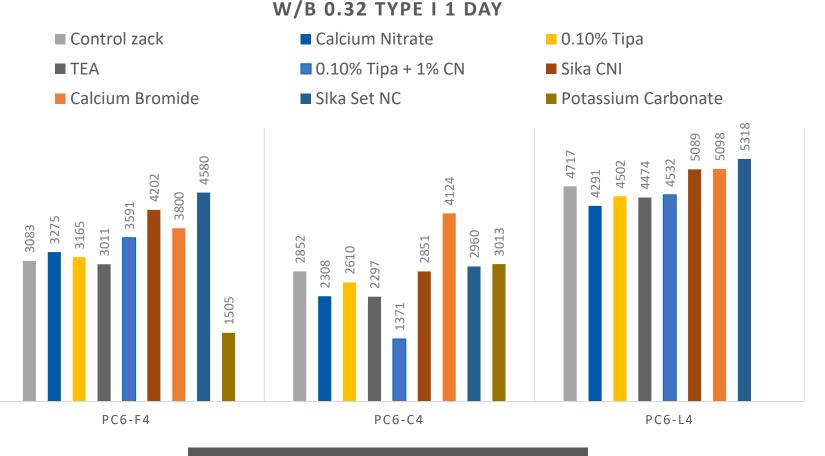
Evaluating mainly compressive strength and flow in this task

Binary Binders

 \rightarrow HVFA & Type III Portland Cement w/ additional optimization

Ternary Binders

→ HVFA, Type III Portland Cement, [additional material] (w/ additional optimization)
 → Ex: CSA, slag, calcined clay, etc.


Evaluation of HVFA [binary] binders (Task 3)

24 HR COMPRESSIVE STRENGTH [PSI]

- → GOAL: ~4000 psi compressive strength of mortar samples at 24 hrs.
- → <u>NOTE</u>: Slightly different than the overall goal of 3500 psi for concrete (discrepancy between mortar and concrete)

Successful Accelerators:

- 1- Calcium Bromide
- 2- Tipa (Triisopropanolamine) +
- CN (Calcium nitrate)
- 3- Sika Set NC (Calcium Nitrate,
- Sodium Thiocyanate)
- 4- Sika CNI (Calcium Nitrite)

40% Fly ash, 60% Portland Cement Type I

Determine **SO**₃ Content of Binder

Material	SO ₃ (XRF)
Type III	2.80%
Class F	2.20%
Class C	2.00%
Landfilled	0.46%
Gypsum	46.5%

1 day

strength

2319

1276

954

967

Class F

SO₂ Content

2.56%

2.92%

3.28%

3.64%

Mix

F-G0

F-G1

F-G2

F-G3

ASTM - C563: Standard Guide For Approximation of Optimum SO₃ in Hydraulic Cement.

ASTM- C595: Standard Specification for Blended Hydraulic Cements determines the maximum sulfate reported as SO₃ as **"4%"**

1 day

strength

2017

4025

4200

4349

Class C

SO₂ Content

2.48%

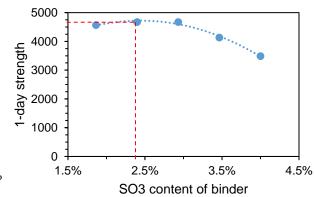
2.86%

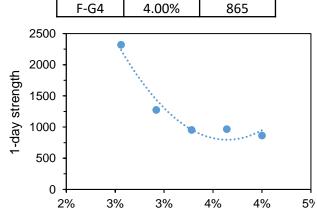
3.24%

3.62%

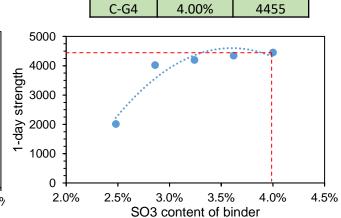
Mix

C-G0

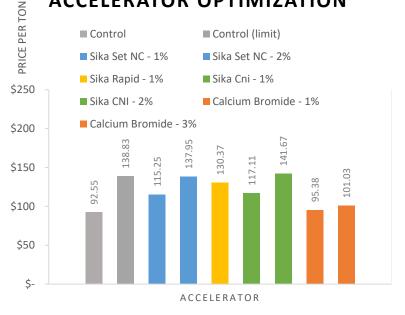

C-G1


C-G2

C-G3


Landfilled

N 41	SO ₃	1 day
Mix	Content	strength
L-G0	1.86%	4563
L-G1	2.40%	4670
L-G2	2.93%	4671
L-G3	3.47%	4131
L-G4	4.00%	3483


SO3 content of binder

Accelerator [admixture] **optimization** (Task 3)

 \rightarrow **GOAL:** Balancing of optimized cost and 24-hour strength performance

ACCELERATOR OPTIMIZATION

		Cla	iss F		Class C			Landfilled				
	Sika Cni	Sika Set NC	Calcium Bromide	Sika Rapid 1	Sika Cni	Sika Set NC	Calcium Bromide	Sika Rapid 1	Sika Cni	Sika Set NC	Calcium Bromide	Sika Rapid 1
Optimal %	1%	1%	1.50%	0.50%	0%	0%	0.50%	0%	1%	1%	1.50%	0.50%
Strength	4688	4167	5505	4446	4455	4455	5156	4455	5476	5269	5554	5134

Scaling to HVFA Concrete (Task 4)

Optimization of 1) aggregate packing, 2) admixture dosage, and 3) w/c ratio was used to scale most promising binders to HVFA concretes

→ Compressive and flexural strength evaluated at several points during early-age period (e.g., within ~12-24 hours & also at 28 days)

Select **Research Results** (Task 4)

40% Fresh Class C FA

Minimum Goal 3500 psi comp. strength @ 24 hours

	Mix Design					
	С40-SCС-030-В	C40-G97-SCC-030-C	C40-G97-CABR2-SCC-030-A	C40-G97-FP20-SCC-030-A		
Main Accelerators	None (control)	Optimized Gypsum	Opt. Gyp. w/ CaBr2	Opt. Gyp. w/ non-Cl Liq. Accel. A		
Air Content (C231)	4.3%	6.8%	4.8%	5.5%		
	12-hour Compr	essive Strength	16-hour Compressive Strength			
Average (psi)	1193.3	603	2903	3017		
	18-hour Compr	essive Strength	20-hour Compressive Strength			
Average (psi)	2513.3	2750	3837	3700		
	24-hour Compressive Strength					
Average (psi)	3750	3760	4317	4210		

	Mix Design				
	С40-SCC-030-В	C40-G97-SCC-030-C	C40-G97-CABR2-SCC-030-A	C40-G97-FP20-SCC-030-A	
Main Accelerators	None (control)	Optimized Gypsum	Opt. Gyp. w/ CaBr2	Opt. Gyp. w/ non-Cl Liq. Accel. A	
Beam No.	12-hour Mo	dulus of Rupture	16-hour Modulus of Rupture		
Average (psi)	202.7	161	515	526	
ACI 318 f _r (psi)	259.1	184	404	412	
Beam No.	18-hour Mo	dulus of Rupture	20-hour Modulus of Rupture		
Average (psi)	336.0	463	562	556	
ACI 318 f _r (psi)	376.0	393	465	456	
Beam No.		24-hou	r Modulus of Rupture		
Average (psi)	439.9	565	599	607	
ACI 318 f _r (psi)	459.3	460	493	487	

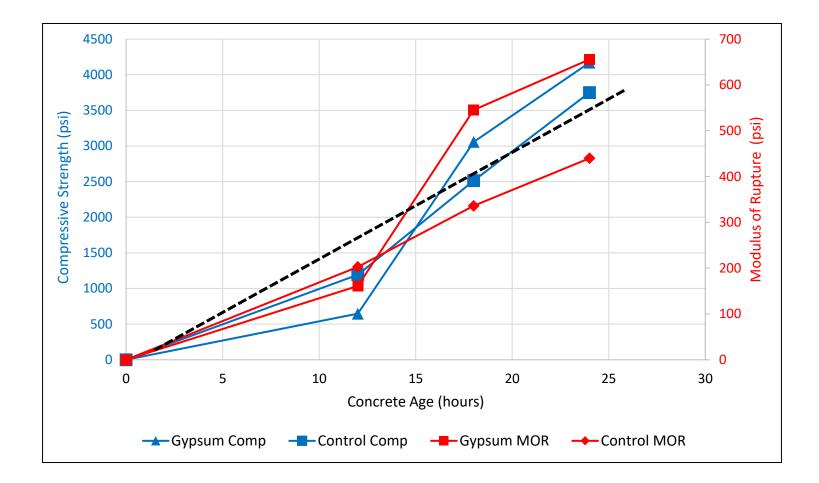
Select **Research Results** (Task 4)

40% Harvested FA

Minimum Goal 3500 psi comp. strength @ 24 hours

	Mix Design				
	L40-SCC-030-A	L40-G97-SR-SCC-030-A			
Main Accelerators	Optimized Gypsum	Opt. Gyp. w/ non-Cl Liq. Accel. B			
Air Content (C231)	6.4%	7.5%			
	16-hour Co	ompressive Strength			
Average (psi)	2183	3147			
	20-hour Compressive Strength				
Average (psi)	3003 3633				
	24-hour Compressive Strength				
Average (psi)	3373	3977			

	Mix Design			
	L40-SCC-030-A	L40-G97-SR-SCC-030-A		
Main Accelerators	Optimized Gypsum Opt. Gyp. w/ non-Cl Liq. Acc			
Beam No.	16-hour	Modulus of Rupture		
Average (psi)	414	499		
ACI 318 f _r (psi)	350	421		
Beam No.	20-hour	Modulus of Rupture		
Average (psi)	470 524			
ACI 318 f _r (psi)	411 452			
Beam No.	24-hour Modulus of Rupture			
Average (psi)	548	561		
ACI 318 f _r (psi)	436 473			



Slump flow test for an L40 mix. High stability with no segregation was observed.

Minimum Goal 3500 psi comp. strength @ 24 hours

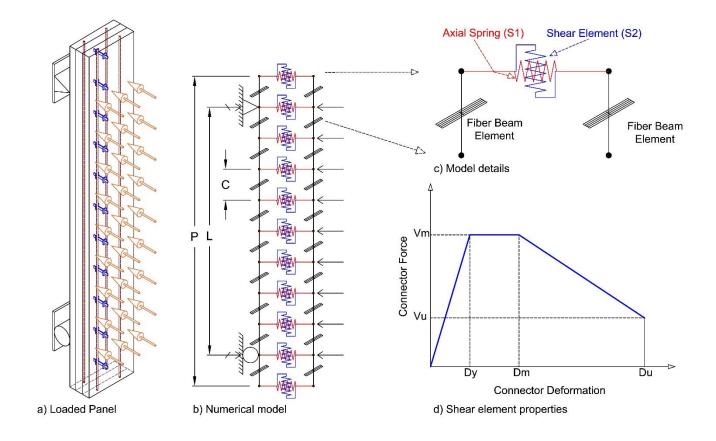
	Mix Design					
	F40-SR-SCC-030-F	F40-SR-SCC-030-F F40-CI30-S40C-SCC-030-B2 F40-SR-S40C-SCC-030-G				
Main Accelerators	non-Cl Liq. Accel.	calcium nitrite Accel.	non-Cl Liq. Accel. B			
Main Accelerators	В	(w/ Steam Curing @ 40°C)	(w/ Steam Curing @ 40°C)			
Air Content (C231)	4.5%	3.3%	5.2%			
	24-hour Compressive Strength					
Average (psi)	2913	4481	4998			

Characterizing HVFA Early Strength Development (Task 4)

Also supplemented with projected concrete strength-maturity curves (ASTM C1074)

Testing of Lifting Anchors in HVFA Concrete (Task 5)

- →Strength testing in Task 4 shows that tensile strength often matures at a different (slower) rate than compressive strength
- →Concrete tensile strength is an important limit state for precast lifting anchors
- →Testing results will report withdrawal capacity of anchors – as a function of concrete properties

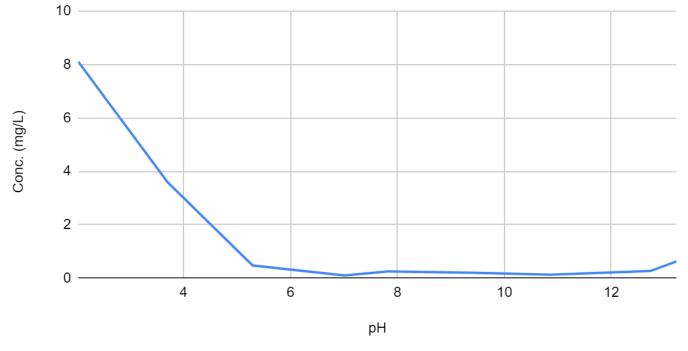

Example of Similar Previous Test

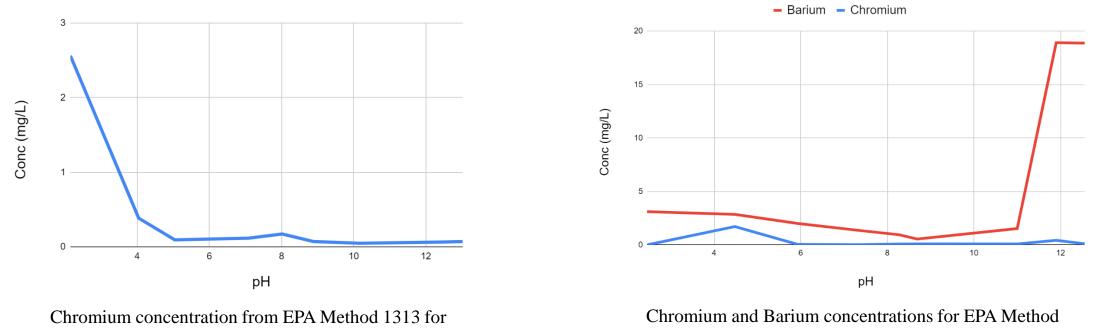
https://www.melbtest.com.au/wp-content/uploads/2020/01/Proof-Load-Test-On-Site.jpg

Preliminary Structural Modeling of Precast Components (Task 5)

- →Serve as valuable link between material properties and predicting the performance of structural precast components
- →Will be validated with experimental test data in Task 5

Larger-Scale Structural Testing of HVFA Members (Task 5)

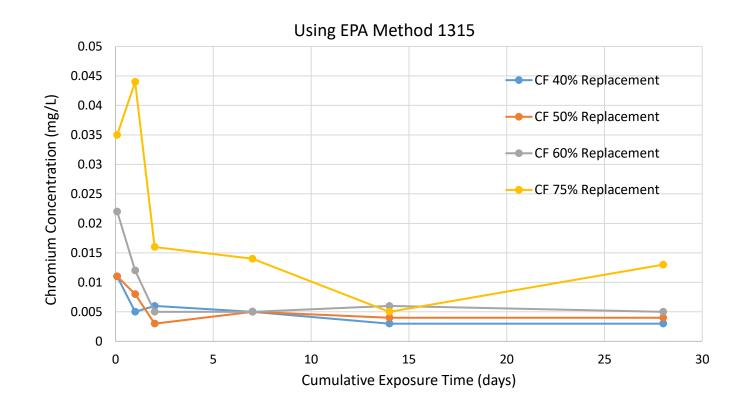



Environmental Performance (Task 6)

One of the fly ash samples exceeded the EPA drinking water limit for chromium. The general trends indicate that the chromium concentration increased as pH decreased. These results represent a maximum potential from the fly ash – <u>once the samples are encapsulated in concrete the available COPCs are expected to be lower</u>.

Chromium concentration from EPA Method 1313 for fresh Class F Fly Ash sample.

Environmental Performance cont... (Task 6)

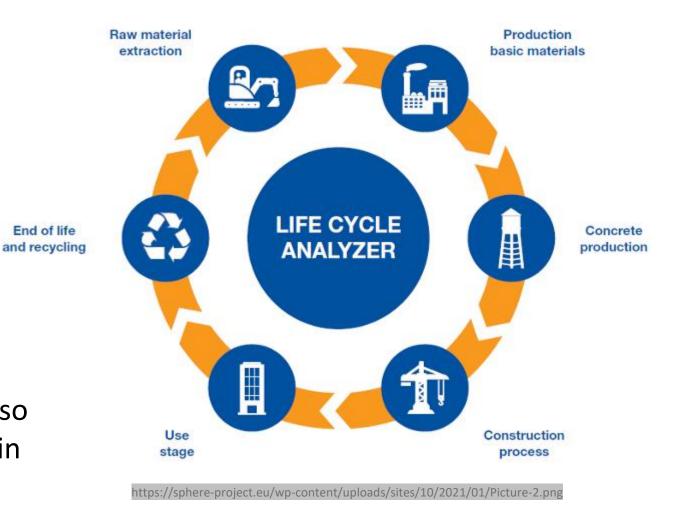

harvested Class F Fly Ash sample.

Chromium and Barium concentrations for EPA Method 1313 for **fresh Class C** Fly Ash.

These results show that the effluent increases with decreasing pH and barium increases with increasing pH.

Once again, these results represent a maximum potential from the fly ash – <u>once the samples are</u> <u>encapsulated in concrete the available COPCs are expected to be lower</u>.

Environmental Performance cont... (Task 6)



SW-846 Test Method 1315: Mass Transfer Rates of Constituents in Monolithic or Compacted Granular Materials Using a Semi-Dynamic Tank Leaching Procedure

This method is one of four Leaching Environmental Assessment Framework (LEAF) methods. It is designed to provide the mass transfer rates (release rates) of inorganic analytes contained in a monolithic or compacted granular material, under diffusion-controlled release conditions, as a function of leaching time.

- →LCA analysis framework has been built to quantify the environmental impact of using HVFA concretes
- →The framework accounts for source of raw (or recycled) materials, transportation costs, end use of the concrete structure(s), etc.
- →Global warming potential (GWP) will also be quantified to aid precast producers in meeting sustainable construction requirements with HVFA mixes

Upcoming Work

Structural testing of HVFA precast members (remaining Task 5)

- \rightarrow Effect of HVFA concrete on PS transfer, reinf. development, etc.
- \rightarrow Non-prestressed RC beam as simple case
- \rightarrow Insulated wall panel(s) [and other prototype precast component(s)]

Finish environmental life-cycle assessments (remaining Task 6)

 \rightarrow Finalize GWP (CO₂e) metrics for novel HVFA mixes

Questions ?

Thank You!