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Project Description and Objectives

Gas-Solid Flows Interaction Forces

CFD

Qiang Zhou et al., Journal of Fluid Mechanics, 765 (2015)

Cesar Martin Venier et al. International Journal of Numerical Methods for Heat and Fluid Flow (2019) 

Long He et al., Powder Technology 345 (2019)

Fluidized bed

Bubbling

Machine Learning

Riser flow

Fines

Swirling and 

falling
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Project Description and Objectives

Non-spherical particle
• Difficult to define the geometrical factors 

sphericity, flatness, elongation and circularity, 

etc.

• Data for the interaction force between non-

spherical particles and the fluids are limited.

• Correlation may be highly-nonlinear.

Objectives
• Developing a neural network-based force 

model for a diversity of non-spherical particles.

• From low O(1) to moderate O(100) Reynolds 

number.

• From low to high volume fraction.

Shiwei Zhao et al., Int J Numer Anal Methods Geomech., 43 (2019) 

Vinay V. Mahajan et al., Chemical Engineering Science, 192 (2018) 4



Project Update

Tasks Year 1 Year 2 Year 3

10/20 1/21 4/21 7/21 10/21 1/22 4/22 7/22 10/22 1/23 4/23 7/23

PR-DNS

development

Particles 

Generation &  

VAE

Low Re data 

Collection

High Re data 

Collection

MLP

Training

Current stage
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METHODS

Spherical Harmonic (SH)
l

m

0
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2

3

4

0 1 2 3 4

Combine linearly, 

Higher weight on higher l → high d

d ~ roughness

Wei, D., Wang, J., & Zhao, B. (2018). Powder Technology, 330, 284-291.

https://en.wikipedia.org/wiki/Spherical_harmonics 6



METHODS

Particle-Resolved Direct Numerical Simulation (PR-DNS)

Gas Kinetic 

Scheme

Simplified Sphere function for 

incompressible flows

Lagrangian

points 

Adaptive mesh refinement 

based on:

Direct forcing scheme
෩𝑼𝑝
𝑛 = 0 for fixed particles
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METHODS

Neural Networks

Kernel

Reduce features 

with multiple 

channels

(transposed) 

convolutional 

layers (CNN)

Multi-layer 

perceptron (MLP) 

𝒚 = 𝜎(𝑾𝒙 + 𝒃)

1 2 1

4 3 2

5 1 2

0 1

1 1
* =

9 6

9 5

Regressed features 

…

Variational Auto-Encoder (VAE)

• Encoder

483→243 ×8 → 123 × 16→ 63 × 32→ 33 × 64 → 27

• MLP/Regularization

27 → 128 × 2 → 128 (latent)

Vertices (Decoder, TCNN)

Force coefficients (MLP)

Flow fields (PIEP, TCNN)

Kernel

Channels

Stride

Re
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RESULTS

Soohwan Hwang et al., Powder Technology, 392 (2021) 

Interaction Force Model for Single Particles

CFD resultsMLP results

+ Re
MLP
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Project Update

PR-DNS Results / MLP
• Re = 0.1~100, 10400 single particles

• Two fully connected hidden layers with 32 and 8 nodes 

with ELUs, and an output layer with linear function

Latent vector

from VAE

Re

Input (129) Output (6)

π π

dense layer
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Project Update

MLP results
• MSEs of evaluation data are:

o Cd : 7.97

o Cl : 0.00546

o Ct : 0.0647

• MAPE of Cd is 3.3%

M. Zastawny, el al., International Journal of Multiphase Flow. 39 (2012)

Re = 50

d = 0.5
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Project Update

Flow field prediction 

• 0.1 < Re < 100, x-direction velocity

• MSE : 0.000021, MAPE : 0.5%

• Ignore the wake effect farther than 10 times 

Deq

Transpose convolutional 

Layers (TCNN)

Latent vector

from VAE

Re

Input (129) Output (160, 160,160)
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Project Update

PIEP with MLP and TCNN

PIEP: Pairwise Interaction Extended Point-particle model

Soohwan Hwang et al., Chemical Engineering Science 266, 118299 (2023)

CFD results

෨𝐹𝑞𝑠,𝑖 = ത𝐹𝑑𝑟𝑎𝑔 𝑅𝑒𝑖, 𝜑 +
𝜌𝑢𝑚𝑎𝑐

2𝐴

2
𝐶𝐷,𝑖

1

𝑢𝑚𝑎𝑐
෍
𝑗=1
𝑗≠𝑖

𝑁

𝑢𝑗→𝑖
𝑆

Undisturbed flow

from TCNN

Re = 0.5 Re = 4.2

Re = 24.0 Re = 49.8
100 different particles 

with 0.5% 

(1 < AR < 2, 0 < d < 0.5)
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Project Update

𝐹𝐷 = 𝐹𝐷𝑓 𝑅𝑒, 𝜑, 𝑑

= 𝐹𝐷𝜑
−3.7+0.65exp(−0.5 1.5−log 𝑅𝑒 2)

log 𝑓

log(𝜑)
= (−3.7 + 0.65 exp −0.5 1.5 − log 𝑅𝑒 2 )

PIEP for dense systems

• Solid fraction factor needs to be determined.

• The factor need to consider particle irregularity and inhomogeneity. 

R. Di Felice, Chem. Eng. Sci., 50 (8) (1995), pp. 1213-1245

PR-DNS results for homogeneous, irregular particles (d = 0 ~ 0.5) 

d = 0.5
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Concluding Remarks

• This study provides the interaction force model for the irregular shaped

particle which is practical in industry.

• The NN based model can predict the neighboring effect of multi-

particle systems.

• The solid fraction effect will be investigated further to make the model 

predict a wider range of flow conditions
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