Ammonia-Based Energy Storage (NH₃-BEST)

+ Project Utility Partners/Sponsors: Basin Electric Minnkota Power Ottertail Power Major Sponsors: U.S. Department of Energy North Dakota Lignite Research Program

Critical Challenges. **Practical Solutions.**

NH₃-BEST–Power Plant Integration Project Overview and Status 20 April 2023

Integrated Energy Storage via NH₃-BEST

 $\rm NH_3\text{-}BEST$ integrated with EGU

Ammonia assets as energy storage medium

- High hydrogen/energy content
- Low storage cost
- Near-zero explosivity hazard
- Carbon-free composition means no CO₂ emitted when converted to electricity, via fuel cell or combustion
- Long-established globally fungible commodity, offers economic flexibility via selling and/or buying to capitalize on market conditions or address production/supply challenges

Major project outcomes

- Preliminary design of NH₃-BEST subsystem and associated EGU integration requirements
- Modeled demonstration of NH₃-BEST performance, including estimated round-trip efficiency and preliminary economics when integrated with an EGU
- Road map for bringing ammonia energy storage to commercial deployment

NH₃-BEST Unit Operations

Under development at EERC

Commercially available

Under development around the world

58-MW NH₃-BEST subsystem with reactor (red rectangle) capable of water electrolysis/H₂ production at anode, NH₃ synthesis at cathode

55-Megawatt ¹ Integrated Electrolysis/NH ₃ Synthesis Reactor	Estimated Values	
(proton generation at anode, NH ₃ synthesis at cathode)	Ultimate	Current
Performance Parameters	Target	Target
Efficiency (based on NH ₃ HH value of 5.2 kWh/kg)	64%	55%
Voltage, V	1.6	1.9
Current density, amps/cm ²	0.406	0.342
Power consumption, watts/cm ²	0.65	0.65
Water consumption, kilograms/hour	11,543	9982
O ₂ generation, kg/hr	12,419	10,498
NH ₃ production, kg/hr	7281	6155
Electricity consumption, kilowatt-hours/kilogram NH ₃	7.6	9.0
Balance of plant ¹ electricity consumption, kWh/kg NH ₃	0.5	0.5
Total electricity consumption, kWh/kg NH ₃	8.1	9.5
NH_3 to power via fuel cell at 6155 kg NH_3 /hr, 60% efficiency		19.2 MW
Round trip (electrical) efficiency ²		33%

¹ Additional power for 1) N₂ separation from air and 2) NH₃ product condensation translates to 58 MW total system. ² Does not account for thermal energy recovery from NH₃ synthesis or fuel cell operations.

NH₃-BEST Island – Details and Considerations

All below numbers based on 55% NH₃ production efficiency

- Total power input (for current design/layout): 58 Mwe includes ammonia production, purification, storage
- Ammonia production capacity: 6155 kg/hour (148 tonnes/day)
- Water input: 9982 kg/hour (2634 gallons/hour or 63,211 gallons/day)
- Air input: 6877 kg/hour
- O₂ output: 8866 kg/hour (electrolyzer) + 1632 kg/hour (air separator) = 10,498 kg/hour
- Max pressure (for ammonia condensation/recovery as product): 17 bar (250 psi)
- Max temperature (for ammonia production): 300°C
- NH₃-BEST Island footprint: ??
- NH₃-BEST Island height requirement: ??
- Ammonia storage capacity: dependent on ammonia disposition (sales, energy storage, combination)
- Ammonia conversion-to-electricity capacity (via direct ammonia fuel cell or ammonia turbine): dependent on ammonia disposition

Water Input for NH₃ Electrolyzer Must Meet ASTM D1193 Type II Specification

Parameter	Value
Electrical conductivity, max, microsiemens/cm at 25°C	1.0
Electrical resistivity, min, megaohms-cm at 25°C	1.0
Total organic carbon (TOC), max, micrograms/liter	50
Sodium, max, μg/L	5
Chlorides, max, μg/L	5
Total silica, max, μg/L	3

70-MW NH₃ synthesis unit with separate reactors* (red rectangles) for water electrolysis/H₂ production and NH₃ synthesis

Per Tonne Ammonia Production Energy Consumption and Cost*

Process/Reactor Type	Energy Consumption, MWh/tonne	Energy Cost, \$/ton
PEM electrolyzer + electrically driven HB reactor	12.0	720
Intgrated electrolyzer/NH ₃ synthesis reactor	9.5	570

*All energy costs based on electricity cost of \$60/MWh (current ND large industrial rate is \$30/MWh)

Energy Storage Round-Trip Efficiency (RTE)*

Process/Reactor Type	RTE
PEM electrolyzer + electrically driven HB reactor	28%
Integrated electrolyzer/NH ₃ synthesis reactor	33%

*Based on NH₃ higher heating value of 5.2 MWh/tonne, NH₃ conversion to electricity in NH₃ fuel cell @60% efficiency

Considerations

PEM or alkaline electrolyzer + electrically driven HB reactor available today Integrated electrolyzer/NH₃ synthesis unit, NH₃ fuel cell, NH₃ turbine available 2025–2030 Diverting power to producing NH₃ (even if only for sale) could eliminate deep cycling NH₃ is global commodity with expanding demand as hydrogen carrier NH₃ price (\$1000–\$1500 for last 18 months) unlikely to drop in near future

Deploying Energy Storage at Existing Power Plant – Considerations

Interconnection limitations: Existing power plants have interconnection rights that limit the amount of energy allowed onto the grid through the interconnection point at any given time. Adding an ammonia fuel cell behind the same interconnection point would require applying for Surplus Interconnection Service, which requires:

- A system impact study to evaluate reliability impacts of the added generator.
- A Monitoring and Consent Agreement outlining how and when the existing interconnection rights will be made available to the new resource.

Resiliency: Pairing energy storage at an existing coal-fired power plant may be challenged by the fact that a coal-plant is designed to run at a high capacity factor, possibly limiting availability to add energy storage as a surplus interconnection.

Economics: Ultimately, as a regulated utility, adding energy storage will need to be proven as a cost-effective addition.

Permitting and approvals: Any new resource addition will require approval from state environmental agency and (for all regulated utilities) state public service commission.

Ranking of Generation Resources Based on Resiliency Factors

Generation Resource	Dispatchable	Reliable Fuel Supply	Energy Price Protection	Ranking Factors
1) Coal Generation	Yes	Yes	Yes	Fuel storage capability and low volatility in fuel price
Ammonia Fuel Cell	Yes	Yes	Yes	Fuel storage capability, made with coal-fired power
2) Dual Fuel Simple Cycle	Yes	Yes	Yes	Fuel oil storage capabilities, multiple fuel sources, fuel oil storage protects from volatility in natural gas market
3) Fuel Oil Simple Cycle	Yes	Yes	Yes	Fuel oil storage capability protects from volatility in natural gas market
1) Natural Gas Simple Cycle	Yes	No	No	No dual fuel capability means dependence on single natural gas supply pipeline, no fuel storage, close gas–electricity market correlation means subject to gas price volatility
1) Battery Storage*	Yes	No	No	Fuel supply cannot be considered reliable only covering 17% of one day, limited fuel supply also diminishes ability to protect customers in volatile events
1) Solar	No	No	No	Ranked higher than wind due to generation occurring during peak loads, and while not dispatchable, no significant correlation to energy and natural gas markets
1) Wind	No	No	No	No fuel storage and relatively close inverse correlation between wind generation operating and energy and gas market prices

*Batteries are not technically generation

If an energy storage system can deliver these attributes, we will use our resource planning software to help determine if it makes costeffective sense for our customers. In our resource plan filed on March 31, 2023, we evaluated battery storage resource alternatives as purchased power agreements (PPA) with a 30-year term and fixed pricing over that term.

Yearly Net Generation (MW)

500.0

Nameplate Capacity: 427 MW Major Deep Cycle: 150 MW (277 MW spread) Output at 95% Nameplate Capacity: 406 MW Looking for buyer of 70 MWs

55-Megawatt NH ₃ -Based Energy Storage Subsystem 65/35 Power/Sales NH ₃ Allocation	Values
NH3 production, tonnes/year @100% capacity	54,000
NH3 to power via fuel cell, tonnes/year	35,000
MWh power @60% efficiency	109,200
Power value @\$105/MWh (ND residential rate)	11,466,000
NH3 to sales, tonnes/year	19,000
Sales value @\$1200/tonne	22,800,000
NH3 value with 100% (54,000 tonnes) to power	17,690,000
NH3 value with 100% (54,000 tonnes) to sales	64,800,000

Recent Texas A&M study shows natural gas price only accounts for 15% of run-up in anhydrous ammonia price, as reported by *Drovers*, 12 January 2022

Figure 7. Anhydrous Ammonia and Natural Gas Prices, January 1995 to October 2021.

ANHYDROUS AMMONIA INCREASED: \$688/ton

From the end of 2020 through the end of October 2021.

However, the increase in the value of the EMBEDDED NATURAL GAS accounts for only \$102 (OR 15%) of that increase.

Graphic Courtesy of Lindsey Benne; Data Provided by AFPC Texas A&M Fertilizer Price Study for Corn Growers

