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▪ Multi-scale highly integrated energy systems

Motivation

2

Molecule 
design

Unit operations, 
process 
intensification

Plant design, 
control and 
operations

Materials 
identification, 
design

Supply chain, 
Power grid

pm nm μm mm m km Length scale

ps

ns

ms

s

min

hour

day

week

year

Time scale

Process design and/or 
optimization given materials 

design & properties

Materials design and/or selection 
given process conditions



▪ Multi-scale highly integrated energy systems

Motivation

3

Molecule 
design

Unit operations, 
process 
intensification

Plant design, 
control and 
operations

Materials 
identification, 
design

Supply chain, 
Power grid

pm nm μm mm m km Length scale

ps

ns

ms

s

min

hour

day

week

year

Time scale

Opportunities exist to optimize
materials and processes simultaneously

Process-Materials 
Co-Optimization

Obtain optimal material design and 
corresponding process design simultaneously



Adsorption-Based Gas Separation

▪ Gas separation processes are crucial parts of next-generation 
energy and environmental technologies

▪ Adsorption-based separation technologies have been intensively 
investigated for potential low energy consumption
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Microporous Materials as 
Adsorbents

▪ Microporous materials (i.e., MOFs, Zeolites) are promising 
adsorbents for adsorption-based gas separation processes

▪ Vast design space of microporous materials calls for systematic 
computational search method

Moosavi et. al. 2016

Weitkamp et.al. 2000
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Database
Number of 

entries
Origin

CoRE-MOF 14,000+ Experiments

hMOF 137,953 Simulations

ToBaCCo 13,512 Simulations

CSD-MOF 96,000+ Experiments

IZA 252 Experiments

hZeo 2.6M Simulations

CoRE-COF 449 Experiments

hCOF 69,840 Simulations

CURATED COFs 482 Experiments

247 trillion MOFs (Lee et. al. 2021)



▪ In silico materials screening

Process-Materials Co-Design 
Approaches

Calculate & compare 
performance metrics

Working capacity, Adsorption selectivity, Separation 
performance metric (SPP), Parasitic energy (PE), etc.
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Farmahini, A.H., Krishnamurthy, S., Friedrich, D., Brandani, S. and Sarkisov, L., 2021. Performance-based screening of 
porous materials for carbon capture. Chemical Reviews, 121(17), pp.10666-10741.



▪ Process simulation-based materials screening

Process-Materials Co-Design 
Approaches

Process performance simulation via 
analog/simplified/black-box model 
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Farmahini, A.H., Krishnamurthy, S., Friedrich, D., Brandani, S. and Sarkisov, L., 2021. Performance-based screening of 
porous materials for carbon capture. Chemical Reviews, 121(17), pp.10666-10741.

Calculate & compare 
process-level performance



Process-Materials Co-Design 
Approaches

▪ Descriptor-based guided sampling with process simulator

Chung, Y. G., Gómez-Gualdrón, D. A., Li, P., Leperi, K. 
T., Deria, P., Zhang, H., … Snurr, R. Q. (2016). In silico 
discovery of metal-organic frameworks for 
precombustion CO2 capture using a genetic 
algorithm. Science Advances, 2(10), e1600909. 
https://doi.org/10.1126/sciadv.1600909

Describe materials 
design space via 

geometrical decomp.

Evaluate via process 
simulation calculated 

performance
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Attempts on Materials-Process 
Co-optimization

▪ Process optimization with property model parameters as decision 
variables

Khurana, M., & Farooq, S. (2017). Integrated adsorbent-process optimization for carbon capture and concentration using 
vacuum swing adsorption cycles. AIChE Journal, 63(7), 2987–2995. https://doi.org/10.1002/aic.15602

Describe materials 
design space via 

parameters in 
property models 
(e.g., adsorption 

isotherm)

Evaluate via rigorous 
process optimization
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Proposed co-
optimization 

approach

Proposed approach

Co-Optimization Overview
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None
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Process 
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Process 
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properties variables

▪ Goal: Push Pareto front of material-process decision fidelity

Yin, X., & Gounaris, C. E. (2022). Computational discovery of Metal–Organic Frameworks for sustainable energy 
systems: Open challenges. Computers & Chemical Engineering, 167, 108022. 

EO modelBlack/Grey box Superstructure
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Project Overview

▪ Focus on the pressure swing adsorption (PSA) and MOFs for post/pre-
combustion CO2 capture applications while keeping methodologies and 
implementation general 
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Enable the systematic search of both the materials 
design space and the process design space within IDAES

Step 1: Optimizable Structure-
Function Relationship Surrogate

Step 2: Equation-Oriented PSA 
Process Model

Step 3: Co-Optimization 
Strategies

PSA Process Model

Surrogate Model

Optimal Process & Material Design

University Coal Research Program
Award DE-FE0032069



Proposed Process-Materials 
Co-Optimization Roadmap
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▪ Automatic surrogate learning pipeline developed

▪ Predictive ML model improves surrogate modeling efficiency and 
helps learn better surrogate via feature selection and data filtration

ML-Assisted Surrogate Learning
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▪ Case study: the CoRE-MOF 2014 DDEC database
– Compute adsorption data with Grand Canonical Monte Carlo simulations

– Compute various types of materials descriptors

– Learn predictive regression model with the AutoML tool

– Learn surrogate model with the IDAES-PSE surrogate tool

ML-Assisted Surrogate Learning
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▪ Case study: the CoRE-MOF 2014 DDEC database

ML-Assisted Surrogate Learning
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▪ Case study: the CoRE-MOF 2014 DDEC database

ML-Assisted Surrogate Learning
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Simulated and surrogate model predicted loadings parity plots

Bayesian information criterionMallow’s CpSum of square errors

Surrogate models for various isotherm forms

Surrogate models for different learning objectives

SSL, 4 params

DSL, 6 params 

DSL, 5 params 

CO2 

N2

Best for 
exploiting 
candidates

Generalize 
better



▪ Case study: the CoRE-MOF 2014 DDEC database

ML-Assisted Surrogate Learning
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H2 

SSL, 3 params 

SSL, 4 params

DSL, 6 params 

DSL, 5 params 

ML model not 
performing well

Sharp turning 
point observed

Very steep slope at low 
pressure region

Alternative temperature dependent 
isotherm equation needed

Ramirez-Vida et. al. 2022

Villajos et. al. 2009

ABUWOJ

BETFEN



Proposed Process-Materials 
Co-Optimization Roadmap
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Pressure Swing Adsorption

▪ Pressure difference drives the adsorption

▪ Continuous adsorption gas separation relies on cyclic operations

▪ Model columns as 1D dynamic packed-beds

– No radial gradients → 1D phenomena

– Rigid adsorbents → fixed solid phase

– Equilibrium-controlled adsorption → isotherm models
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IDAES-PSE Standard Process 
Model

▪ Custom 1D packed bed unit model developed

▪ Implementation follows IDAES standards
Gas phase

𝑦𝑖(𝑡, 𝑧) 𝐹(𝑡, 𝑧)

𝑃(𝑡, 𝑧) 𝑇(𝑡, 𝑧)

Solid phase

Gas Phase CV 1D

• Geometry 
• Material Balance
• Energy Balance
• Momentum Balance

Gas Phase Property Package

Performance Equations

• Hydrodynamic equations
• Adsorption isotherm
• Mass transfer term
• Heat transfer term

Inlet

Outlet

Solid Phase Indexed State Blocks
Solid Phase Property Package
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IDAES-PSE Standard Process 
Model

▪ Give users control over the fidelity of the model

▪ Implementation takes advantage of the built-in configuration 
options and the modular architecture of IDAES-PSE

▪ 5 fidelity options result in 36 column fidelity levels 
– Momentum: No pressure drop/linear pressure drop/Ergun equation

– Heat transfer: isothermal/Adiabatic/Diabatic with heat loss

– Mass transfer: Immediate adsorption equilibrium/Linear driving force

– Isotherm: Henry’s law/Single-site Langmuir/Dual-site Langmuir
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Gas Phase CV 1D

Momentum Balance

Performance Equations

Pressure drop term
Pressure 
drop
fidelity 
option



IDAES-PSE Standard Process 
Model

▪ Lowest fidelity model
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IDAES-PSE Standard Process 
Model

▪ Highest fidelity model
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IDAES-PSE Standard Process 
Model

▪ Case study: first two steps in the FVPSA cycle
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Leperi, K. T., Chung, Y. G., You, F., & Snurr, R. Q. (2019). Development of a general evaluation 
metric for rapid screening of adsorbent materials for postcombustion CO2 capture. ACS 
Sustainable Chemistry & Engineering, 7(13), 11529-11539.

• Discretization:

• Pyomo.DAE capability that 
is built in IDEAS-PSE

• Length domain: Single-point 
collocation method, CSTR 
approximation to handle 
“steep front” 

• Time domain: Backward 
finite differences



IDAES-PSE Standard Process 
Model

▪ Case study: first two steps in the FVPSA cycle
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• Boundary conditions:

• Pressurization: feed at inlet, 
outlet valve closed

• Adsorption: feed at inlet, 
steady production at outlet

• Initial conditions:

• Pressurization: steady state 
(no accumulations)

• Adsorption: pressurization 
final state (solve t0 block)

Pressurization Adsorption

Steady 
State

Final 
State



IDAES-PSE Standard Process 
Model

▪ Case study: first two steps in the FVPSA cycle

31

• Scaling: IDAES-PSE template

• Initialization:
• Cascade initialization using 

IPOPT solving discretized NLP

• Simulation:
• Backward Euler via IDEAS-PSE 

PETSc interface

Properties

Velocity

Mass balance

Mass transfer

Pressure drop

Energy balance

Approximation -> Ergun

gas energy accumulation: 
off -> on

Cascade initialization routine



IDAES-PSE Standard Process 
Model

▪ Case study: FVPSA cycle pressurization step
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IDAES-PSE Standard Process 
Model

▪ Case study: FVPSA cycle adsorption step
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Next Step: PSA Cycle 
Simulation & Optimization

Extract Materials Descriptors 
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Conclusions
▪ Opportunities exist in incorporating materials design with process

design/operation in a co-optimization framework

▪ A PSA process with MOF adsorbents co-optimization workflow is 
implemented within the IDAES-PSE integrated platform

– Optimizable MOF structure-function relationships were learned via a 
custom-built ML-assisted surrogate learning workflow

– Fidelity-tunable PSA Column unit models were developed and will be 
contributed to the IDEAS-PSE model library
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