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ÁMulti-scale highly integrated energy systems
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Opportunities exist to optimize
materials and processes simultaneously

Process-Materials 
Co-Optimization

Obtain optimal material design and 
corresponding process design simultaneously



Adsorption-Based Gas Separation

ÁGas separation processes are crucial parts of next-generation 
energy and environmental technologies

Á Adsorption-based separation technologies have been intensively 
investigated for potential low energy consumption
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Microporous Materials as 
Adsorbents

ÁMicroporous materials (i.e., MOFs, Zeolites) are promising 
adsorbents for adsorption-based gas separation processes

Á Vast design space of microporous materials calls for systematic 
computational search method

Moosaviet. al. 2016

Weitkampet.al. 2000
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Database
Number of 

entries
Origin

CoRE-MOF 14,000+ Experiments

hMOF 137,953 Simulations

ToBaCCo 13,512 Simulations

CSD-MOF 96,000+ Experiments

IZA 252 Experiments

hZeo 2.6M Simulations

CoRE-COF 449 Experiments

hCOF 69,840 Simulations

CURATED COFs 482 Experiments

247 trillion MOFs (Lee et. al. 2021)



Á In silico materials screening

Process-Materials Co-Design 
Approaches

Calculate & compare 
performance metrics

Working capacity, Adsorption selectivity, Separation 
performance metric (SPP), Parasitic energy (PE), etc.
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ÁProcess simulation-based materials screening

Process-Materials Co-Design 
Approaches

Process performance simulation via 
analog/simplified/black-box model 

8

Farmahini, A.H., Krishnamurthy, S., Friedrich, D., Brandani, S. and Sarkisov, L., 2021. Performance-based screening of 
porous materials for carbon capture. Chemical Reviews, 121(17), pp.10666-10741.

Calculate & compare 
process-level performance



Process-Materials Co-Design 
Approaches

Á Descriptor-based guided sampling with process simulator

Chung, Y. G., Gómez-Gualdrón, D. A., Li, P., Leperi, K. 
T., DeriaΣ tΦΣ ½ƘŀƴƎΣ IΦΣ Χ Snurr, R. Q. (2016). In silico 
discovery of metal-organic frameworks for 
precombustionCO2 capture using a genetic 
algorithm. Science Advances, 2(10), e1600909. 
https://doi.org/10.1126/sciadv.1600909

Describe materials 
design space via 

geometrical decomp.

Evaluate via process 
simulation calculated 

performance
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Attempts on Materials-Process 
Co-optimization

Á Process optimization with property model parameters as decision 
variables

Khurana, M., & Farooq, S. (2017). Integrated adsorbent-process optimization for carbon capture and concentration using 
vacuum swing adsorption cycles. AIChEJournal, 63(7), 2987ς2995. https://doi.org/10.1002/aic.15602

Describe materials 
design space via 
parameters in 

property models 
(e.g., adsorption 

isotherm)

Evaluate via rigorous 
process optimization
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Proposed co-
optimization 

approach

Proposed approach

Co-Optimization Overview
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ÁGoal:Push Pareto front of material-process decision fidelity

Yin, X., & Gounaris, C. E. (2022). Computational discovery of MetalςOrganic Frameworks for sustainable energy 
systems: Open challenges.Computers & Chemical Engineering,167, 108022. 

EO modelBlack/Grey box Superstructure
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Project Overview

Á Focus on the pressure swing adsorption (PSA) and MOFsfor post/pre-
combustion CO2 capture applications while keeping methodologies and 
implementation general 
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Enable the systematic search of both the materials 
design space and the process design space within IDAES

Step 1: Optimizable Structure-
Function Relationship Surrogate

Step 2: Equation-Oriented PSA 
Process Model

Step 3: Co-Optimization 
Strategies

PSA Process Model

Surrogate Model

Optimal Process & Material Design

University Coal Research Program
Award DE-FE0032069



Proposed Process-Materials 
Co-Optimization Roadmap
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Calculate Adsorption Data

Learn Structure-function 
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Proposed Roadmap Expected Outcome

Extractor(              )

Calculator(              )

Descriptors

Properties

Structure-function Relationship

Automation & Standardization

Accuracy & Complexity Tradeoff



Á Automatic surrogate learning pipeline developed

Á Predictive ML modelimproves surrogate modeling efficiencyand 
helps learn better surrogatevia feature selection and data filtration

ML-Assisted Surrogate Learning
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Á Case study: the CoRE-MOF 2014 DDEC database
ï Compute adsorption data with Grand Canonical Monte Carlosimulations

ï Compute various types of materials descriptors

ï Learn predictive regression modelwith the AutoMLtool

ï Learn surrogate modelwith the IDAES-PSE surrogate tool

ML-Assisted Surrogate Learning
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