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Opportunities exist to optimize
materials and processes simultaneously
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= Gas separation processes are crucial parts of next-generation
energy and environmental technologies

= Adsorption-based separation technologies have been intensively
investigated for potential low energy consumption
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Metz, B., Davidson, O., De Coninck, H.C., Loos, M. and Meyer, L., 2005.

IPCC special report on carbon dioxide capture and storage.
Cambridge: Cambridge University Press.

Relative Energy Use by Various Separation Technologies
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Angelini, P., Armstrong, T., Counce, R., Griffith, W., Klasson,
T.L., Muralidharan, G., Narula, C., Sikka, V., Closset, G.,
Keller, G. and Watson, J., 2005. Materials for separation
technologies: Energy and emission reduction opportunities.
DOE, EERE Office, Washington, DC, 103.
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= Microporous materials (i.e., MOFs, Zeolites) are promising
adsorbents for adsorption-based gas separation processes

= Vast design space of microporous materials calls for systematic
computational search method

m —>ﬂ ﬂ ﬁoggm CoRE-MOF 14,000+ Experiments

B 2 o hMOF 137,953 Simulations

ToBaCCo 13,512 Simulations

» CSD-MOF 96,000+ Experiments

ot Separaﬁngi_ | 1ZA 252 Experiments

S i hZeo 2.6M Simulations

i CoRE-COF 449 Experiments
’ ' ‘ hCOF 69,840 Simulations
CURATED COFs 482 Experiments

__________________________________

Moosavi et. al. 2016 247 trillion MOFs (Lee et. al. 2021) 6
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= |n silico materials screening

Working capacity, Adsorption selectivity, Separation

performance metric (SPP), Parasitic energy (PE), etc.

‘Ma ny materials}

Most promising

candidates
%o 4 J Performance |
°° " targets met
Experimental
Calculate & compare < systemsand
performance metrics _ processes

Farmahini, A.H., Krishnamurthy, S., Friedrich, D., Brandani, S. and Sarkisov, L., 2021. Performance-based screening of
porous materials for carbon capture. Chemical Reviews, 121(17), pp.10666-10741.

NATIONAL

TECHNOLOGY
LABORATORY



Carnegie

ion. — Process-Materials Co-Design
Approaches

" Process simulation-based materials screening

TL

Process performance simulation via
analog/simplified/black-box model

lMa ny materials]

Most promising

candidates
%0 J Performance |
°®° targets met
Experimental
Calculate & compare { systemsand |
process-level performance | | processes

Farmahini, A.H., Krishnamurthy, S., Friedrich, D., Brandani, S. and Sarkisov, L., 2021. Performance-based screening of
porous materials for carbon capture. Chemical Reviews, 121(17), pp.10666-10741.
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= Descriptor-based guided sampling with pro

cess simulator

Describe materials — :
Initial population (N = 100)

Evaluate via process

design space via v

geometrical decomp. — Evaluate fitness

simulation calculated
/ performance

v

—» Tournament selection

Genetic algorithm

v

Genetic operations

< No

v

New chromosome

hMOF
database

— -t idlo o
Interpenetration capacity (0-3) population pool

(N = 51,163) Yes

v

Chung, Y. G., Gdmez-Gualdrén, D. A,, Li, P., Leperi, K.
T., Deria, P., Zhang, H., ... Snurr, R. Q. (2016). In silico
discovery of metal-organic frameworks for
precombustion CO2 capture using a genetic
algorithm. Science Advances, 2(10), e1600909.

1| —
1 | = Actual interpenetration (0-3) Yes
0 | = Inorganic node (0-4)
9 | = Primary organic linker (0-39)
13| = Secondary organic linker (0-39) @
1| = Functional group (0-14) Yes
| End of GA

| https://doi.org/10.1126/sciadv.1600909 9
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" Process optimization with property model parameters as decision
variables

7 v I
/ S 2 N\
Decision Variables

\

Describe materials .
design space via Process Objectives & Evaluate via rigorous
: Variables Constraints rocess optimization
parameters n P P
property models
isotherm) | Characteristics Process
\ / &
Isotherms
Four-Step Cycle Six-Step Cycle
Minimum energy Maximum Productivity Minimum Energy Maximum Productivity
(At 0.02 atm) (At 0.01 atm) (At 0,05 atm) (At 0.04 atm)
13X Zeolite 164.3 1.30 184.2 2.2
UTSA-16 128.0 2.1 153.8 4.6
Isotherm from integrated optimization 106.0 3.0 116.7 7.4

Khurana, M., & Faroogq, S. (2017). Integrated adsorbent-process optimization for carbon capture and concentration using
vacuum swing adsorption cycles. AIChE Journal, 63(7), 2987-2995. https://doi.org/10.1002/aic.15602 10
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= @Goal: Push Pareto front of material-process decision fidelity

Material ¢ Existing approaches
decisions ® Proposed approach
Building block- _ _
Guided-sampling
level : Proposed co-
With process Co
. optimization
simulator h
Descriptor-level . approac
Process
properties Vartables
Candidate choice
Process (Simplified) Process Process
metrics-based simulation-based optimization for
None screening screening (few) candidates
None Black/Grey box EO model Superstructure  Process
decisions
Yin, X., & Gounaris, C. E. (2022). Computational discovery of Metal—Organic Frameworks for sustainable energy 11

systems: Open challenges. Computers & Chemical Engineering, 167, 108022.
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Enable the systematic search of both the materials
design space and the process design space within IDAES

Step 1: Optimizable Structure-
Function Relationship Surrogate

Surrogate Model

Step 2: Equation-Oriented PSA O
Process Model

PSA Process Model

Step 3: Co-Optimization

Strategies

Optimal Process & Material Design

=  Focus on the pressure swing adsorption (PSA) and MOFs for post/pre-
combustion CO, capture applications while keeping methodologies and
implementation general

Award DE-FE0032069 12
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Extract Materials =

Relation:

Automatio

Calculate Adsor,_ ... _ ___ B

n & Standardization

Learn Structurc - Accuracy & Complexity Tradeoff

Structure-function Relatioﬁship

Descriptors

Properties

13
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ML-Assisted Surrogate Learning

= Automatic surrogate learning pipeline developed
" Predictive ML model improves surrogate modeling efficiency and

helps learn better surrogate via feature selection and data filtration

MOF
Structures

Adsorption
Data

3 s & A
.

v

v

Material
Descriptors

Isotherm Model

Parameters

) 4

Filtered Surrogate
Learning Inputs

Predictive
Model
Learning

_____________
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Hyper-
parameter
Tuning

1 4

a

4

]

_________

Surrogate
Learning

) 4

Surrogate
Model

14
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University ML'ASSiSted Su rrogate Lea rning

= Case study: the CoRE-MOF 2014 DDEC database

— Compute adsorption data with Grand Canonical Monte Carlo simulations

— Compute various types of materials descriptors

— Learn predictive regression model with the AutoML tool

— Learn surrogate model with the IDAES-PSE surrogate tool

CoRE-MOF @ - Structural,
2014 DDEC . geometrical ). . . Selected

database %{ & chemical i features @ AutoGluon

. descriptors | | l 1
ML R — >
@AutoGluon model < S i /\L/\MQ
GCMC Regressed | l
simulated | __, parameters ). o » Selected Surrogate
isotherms of isotherm data points Model
models

15
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= Case study: the CoRE-MOF 2014 DDEC database

Example DSL Cumulative distribution Simulated and ML model
isotherm fitting of regression R2 scores predicted loadings parity plots
. 1.0 15
10 4
< . = SSL, 3 params

o 08 = SSL 4params
5 = DSL, 5 params 104
., ABUWO) ool .
c < =1
g § 3
g7 £ 04/ &
g L R2=0.996 5

® Isotherm data points at 273 K 0.2

Isotherm data points at 298 K ! y
—— DsL2 fitat 273K —_’_”_//
54 DsL2 fit at 298 K 0

T T T T T T 0.0 T T T T ' 1
o 2z 4 & 3 1 1 00 02 04 06 08 10 0 5 10 15

Pressure (bar) R score

Qregression

1.0
5 ABUWOJ = SSL, 3 params
081 ™= SSL, 4params
3] == DSL, 5 params
= c
o o
£ c 0.6 =
i :
H :
£ & 0.4 <
s
] R2=1.000
14 ® Isotherm data points at 273 K 0.2 1
Isotherm data points at 298 K
—— DsL2fitat273K
DsL2 fit at 298 K
B 0.0 . ‘ ,
0 2 4 6 8 10 12 0.98 0.98 0.99 0.99 1.00
Pressure (bar) RZ score Qregression

16
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ML-Assisted Surrogate Learning

Oprediction

Qprediction

Case study: the CoORE-MOF 2014 DDEC database

Simulated and surrogate model predicted loadings parity plots
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Qregression Qregression Qregression
Surrogate models for various isotherm forms
. L . L ]
Best for . 104 Generalize
10 - e o 10 4 b 0 ®e
exploiting . e better e B 2
candidates #" < oS3 g ‘o0
& ; y
o © ate g e,
{ & Es] oF LTI nd
s P Fo e ®
- ayr s,
,-t" o o ™
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Qregrgssiun qrr.qu:ision QIEgresslan
Sum of square errors Mallow’s Cp Bayesian information criterion

Surrogate models for different learning objectives
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SSL, 4 params
DSL, 5 params

17
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Case study: the CoORE-MOF 2014 DDEC database
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4 MOFs+ H, adsorption
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MOF-177

IS @~

Excess H,(wt.%)
N
Texture

Pressure (MPa)

Parameters of the

o

T
100
Pressure / bar

Villajos et. al. 2009

Very steep slope at low
pressure region

Modified Dubinin-Astakhov Equation

Ramirez-Vida et. al. 2022

Alternative temperature dependent
isotherm equation needed
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Extract Materials Descriptors  Extractor(

Calculate Adsorption Data Calculator(

Learn Structure-function
Relationship
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Expected Outcome

e

) — HVE Descriptors

)—»

—

»
= >
o e
o e
° .
° .
° .

Properties

Structure-function Relationship

Model Adsorption Column

IDAES standards
Des

m(

A

Fidelity-tunable

7'\

1eet

1 v

19
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" Pressure difference drives the adsorption
= Continuous adsorption gas separation relies on cyclic operations

= Model columns as 1D dynamic packed-beds
— No radial gradients = 1D phenomena
— Rigid adsorbents = fixed solid phase
— Equilibrium-controlled adsorption = isotherm models

MOF surrogate
N T; o model
%0 . fl\ i ’\I\/\/
-§ Working Gas phase
—! Capacity i |\ e yi(6n) Pz SO
——————————————— i P(t,z) T(t,z) phase

iAT £
PEx ki i
M
e gl S

P ressure https://www.linde-engineering.com/en/images/

5-bed 5-step cycle Column conceptual model

20
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= Custom 1D packed bed unit model developed o e
* |Implementation follows IDAES standards N ) soldphase
S —
Outlet
Gas Phase CV 1D Performance Equations
* Geometry * Hydrodynamic equations
* Material Balance e Adsorption isotherm
* Energy Balance * Mass transfer term
e Momentum Balance * Heat transfer term

Gas Phase Property Package

Solid Phase Indexed State Blocks

Solid Phase Property Package

Inlet

21
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= Give users control over the fidelity of the model

" |Implementation takes advantage of the built-in configuration
options and the modular architecture of IDAES-PSE

Performance Equations Gas Phase CV 1D
Pressure
drop Pressure drop term Momentum Balance
L 0
fidelity OP, .
option AP, , = SLinear (Ut.2) 0= fdx s L x AP,
fErgun(ut,az)

= 5 fidelity options result in 36 column fidelity levels
— Momentum: No pressure drop/linear pressure drop/Ergun equation
— Heat transfer: isothermal/Adiabatic/Diabatic with heat loss
— Mass transfer: Immediate adsorption equilibrium/Linear driving force
— Isotherm: Henry’s law/Single-site Langmuir/Dual-site Langmuir

23
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" Lowest fidelity model

m.fs.PB = PackedBedlD
finite_elements=nxfe
step=step_name
has_heat_generation=False
has_heat_loss=False
pressure_drop_type=Nonhe
mass_transfer_type=None
isotherm_type="henry"
gas_phase_config={"property_package": m.fs.gas_properties
solid_phase_config={"property_package": m.fs.solid_properties

Isothermal
Henry's Law Adiabatic
A : Non-
. Equilibrium Langmuir Sdiabatic
O pressure
Lowest
e drop Linear Dual-site
fidelity driving force Langmuir
model Ergun
equation

24
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= Highest fidelity model

m.fs.PB = PackedBed1D
finite_elements=nxfe
step=step_name
has_heat_generation=True
has_heat_loss=True
pressure_drop_type="ergun_correlation”
mass_transfer_type="l1inear_driving_force"
isotherm_type="ds1"
gas_phase_config={"property_package": m.fs.gas_properties
solid_phase_config={"property_package": m.fs.solid_properties

No pressure

Highest drop
fidelity Equilibrium Henry's Law
model Ergun
equation i
inear .
. Langmuir Isothermal
driving force
DUl Sl Adiabatic
Langmuir
Non-
adiabatic

26
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= (Case study: first two steps in the FVPSA cycle

N,

1 . .
7 * Discretization:

* Pyomo.DAE capability that
5 is built in IDEAS-PSE

Pressurization
Feed

Co-Current
Depressurization
Counter-Current

Flue Gas — “ Tl L 0,
| . T Produat * Length domain: Single-point
collocation method, CSTR

approximation to handle
“steep front”

|
1

-
(]
T

—y

o
oo

* Time domain: Backward
finite differences

Average Column Pressure [bar]

G il 1 1 'l -
0 20 40 60 BO 100 120 140
tpm Yoed Time [s] “depres,1 ‘depres,2

Leperi, K. T., Chung, Y. G., You, F., & Snurr, R. Q. (2019). Development of a general evaluation
metric for rapid screening of adsorbent materials for postcombustion CO2 capture. ACS
Sustainable Chemistry & Engineering, 7(13), 11529-11539.

29
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= (Case study: first two steps in the FVPSA cycle

Pressurization Adsorption  Boundary conditions:
oP/0z =0 0P[0z =0 * Pressurization: feed at inlet,
0yi/0z =0 ,/ 0yi/0z=0 outlet valve closed
oT [0z =0 0T /0z =0 _ .
o * Adsorption: feed at inlet,
u =20 U = Ufeed ]
steady production at outlet
Steady Final
State .. ..
State * |nitial conditions:
* Pressurization: steady state
P = Pos/Py — Py P Pros/Poss (no accumulations)
Yi = Yfeed,i Yi = Yfeed,i o

Adsorption: pressurization

I' = Tfeed 1= Tfeca final state (solve t, block)
u = /U/feed U = /u’feed

30
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= (Case study: first two steps in the FVPSA cycle

Properties

Velocity Ug

Mass balance | C;,J

Mass transfer | %>

Pressure drop

Scaling: IDAES-PSE template

Pss Pgs Hgs Cp.gs Cp sy AHgas

Initialization:
e (Cascade initialization using
IPOPT solving discretized NLP

Simulation:
e Backward Euler via IDEAS-PSE
PETSc interface

P, «— Approximation -> Ergun

Energy balance | 1

H,, Hy gas energy accumulation:

T, * off -> on

g

Cascade initialization routine

31
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F—
H

&l 53 ]
= (Case study: FVPSA cycle pressurization step —= 7 e,
Floe.Ges —{J—J T, Product
ral £ 0.4 Outlet | goa4
3.0 3.0 = =
— - , 3 valve 3
© E ' . E| 0.3 E| 0.3
=25 S25{ | Swing S closed | &
g 5 S o02; 5 o2
z 7 pressure g S
920/ g 20 | . 3| 8[
> . w.r.t. time >o01 201
3 8
151 151/ % 0 % 0
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
height (-) time (s) height (-) time (s)
Pressure profiles Velocity profiles
0.09 1 0.09 1 0.97 { 0.97 1
(o] ;
8 8 | adsorbed | 205 2 00s] |
g 297 g %711 £ / £ / N, conc
g 0.06 g 0.06 1 ". over tlme 8 0.94 - 8 0.94 ,I ' 2 .
! o \ J! o | increase
S 0.05 ® 0.05] | 2 0.93; g o093 .
o \ o o @ over time
20.04—\ Eocm- 5092/ 2 0.921
0.03{ ; ; ; 0.03{_ . ‘ ‘ 091! . . | 0.911° . . .
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
height (-) time (s) height (-) time (s)
First CO2 mole fraction profile N2 mole fraction profile
irs
I — 32
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E | % |5
i
= (Case study: FVPSA cycle adsorption step T U .
le—5+3.403 le—5+3.403
"I ™ 2 2 Converge
f £ 0.00301 £ 0.00301 g
72 ] n n
= T & / 3,0.0025 5,0.0025 to Ste.ady
370 S 70 é 0.0020 £ 0.0020 velocity
=] 5 Q 1]
£ s £ 681 5 0.0015 | 5 0.0015
* |Pressure : r | > 000
£ 0.0010 = | £ 0.0010]
66 1 66 1 s s 3
drop ¢ 0.0005 ¢ 0.0005{
0 5 10 15 0 [ lo 15 0 5 10 15 0 5 10 15
height (-) time (s) height (-) time (s)
Pressure profiles Velocity profiles
— 0.038 — 0.038 ~ ( _
~ Conc. ~ ~ 0.968 ) ~0968] .
S 0.036 fil 8 0.036 Low Conc. %:l Conf(.:l % High Conc.
g pro |g 2 CO, at £ 0965 pro |g £oses| €O, at
©10.034 | remains “o0034| outlet o' remains o
B 8 g 8 outlet
g I £,0.964 £,0.964
o' o' £ 9
2 0.032 2 0.032 ° .
£ E 0.962 1 0.962 1
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
height (-) time (s) height (-) time (s)
First CO2 mole fraction profile N2 mole fraction profile
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Extract Materials Descriptors

Calculate Adsorption Data
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re-function
nship

Learn Stru
Relg

Model Ads@@tion Column

Design Process Flowsheet

Identify Economic Objective and
Design/Performance Constraints

Co-Optimize System

System model
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Expected Outcome

=

[]E] Flowsheet

Optimal Process & Material
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= Opportunities exist in incorporating materials design with process
design/operation in a co-optimization framework

= A PSA process with MOF adsorbents co-optimization workflow is
implemented within the IDAES-PSE integrated platform

— Optimizable MOF structure-function relationships were learned via a
custom-built ML-assisted surrogate learning workflow

— Fidelity-tunable PSA Column unit models were developed and will be
contributed to the IDEAS-PSE model library
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