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Agenda

• Who is on the Team?
✓ Project team
✓ Advisors

• Brief overview
✓ Project review – background of the project
✓ Strategic value
✓ Advisor input & feedback

• What’s been done so far?
✓ Understanding the Data
✓ Machine Learning Models
✓ Weibull Model
✓ Machine Learning Model Validation

• SPS Perspective & What’s Next

• Questions???
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The Project Team

4

Project Leadership, Data analytics & Support, IT

✓ Sal DellaVilla – CEO & Principal Investigator

✓ Bob Steele – Vice President IT

✓ Tripp DellaVilla – Sr. Project Manager & Business Analyst

Project Management, Support, and Engineering 

✓ Chris Perullo – Directing & Supporting technical input & providing 

SME for modeling & Weibull Analysis

✓ Scott Sheppard – Data Analysis

✓ Steven Koskey – Data Analysis

✓ Omer R. Bakshi - Project Manager

✓ Andrew Kinsel - Contract Specialist

Data Analysis and AI/ML Model Building Capability

✓ Edgar Lara-Curzio– Leadership
✓ Matt (Sangkeun) Lee – RAM Data & Machine Learning

✓ Olivera Kotevska – RAM Data & Machine Learning



Roles & Responsibilities
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• SPS
✓ Provide project direction & leadership
✓ Provide ORAP data expertise & expectations
✓ Engage Owner/Operators – Participation
✓ Sensitivity analysis, validation and verification
✓ Deployment strategy

• Turbine Logic
✓ Lead ORNL effort
✓ Develop strategy for processing synthetic 

events
✓ Develop Weibull & simulation model - Python
✓ Prepare for deployment

• ORNL
✓ Refine ML model
✓ Create synthetic events (Unit & technology 

focused)
✓ Support Weibull modelling
✓ Recommend deployment options – Migrate 

from HPC



Advisors

• Rick Tomlinson, Chevron Pipeline & Power 

• Don Haines, PPOMC 

• Steve Worthington, Arizona Public Service 

• Ed Fuselier, Kindle Energy – Retiring, No longer active on the 
Board
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A Review – Background of the Project

• Project work initiated under 2 HPC4Mtls Projects: Performed by NETL & 
ORNL teams 

• Extend the research results beyond the proof-of-concept phase 
• Including verification and validation testing
• With direct support and collaboration from operating power plants

• Rely on the field data that is available for use in the ORAP® (Operational 
Reliability Analysis Program®) database

• Historical Time Series Data to a component level
• Near Real-Time Process Data (sensor quality process data points)

• Data Fusion:  To benefit operating plants 
• Not remote monitoring & Not the Digital Twin
• Reduced plant disruptions – impact of changing service demand (operating flexibility)
• Understand the impact of more challenging duty cycles (cyclic), readiness for green fuels (H2)
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Challenges Facing Plant Operators
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• Responding to Faults During 
Plant Lifecycle

• Anticipating and Reducing the 
Impact of Impending Failures

✓Complex technology & total plant

• Predicting Plant Events & 
Outage Durations (Cost)

✓How quickly can we look back at 
data for analysis, use and 
decision-making?

✓M&D (Monitoring & Diagnostics) 
Evolved to mitigate OEM 
(Original Equipment 
Manufacturer) risks… not to be 
predictive



What’s the big picture?
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Fit into existing workflow and tools



Strategic Value

• It is important to recognize that the owner/operator (Asset Manager) already have an abundance of 
technical and operating knowledge, with lots of data at their fingertips; experience and expertise 
that, for many, results in “best in class” performance

• The intent of FE0032035 is not to replicate or replace what already works in the Asset Manager’s best 
interests, rather, its purpose is to fill a large gap providing something that they don’t currently have 
and that they absolutely need

• Asset Managers are concerned with what is going to prevent their operating plant from fulfilling its 
operating “mission” now

• They are concerned about issues/events that they are not expecting to happen, and when they do 
happen, how long it will take to recover and at what total cost

• The value is to predict the adverse behavior of physical systems, components, materials, and designs 
with sufficient time and guidance for cost effective corrective action at the plant

• What, and when, is the next significant event?
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Advisor input and feedback

• Safety – not putting people in harm’s way is critical to operations. 

• Consider the operating envelope – can we safely extend outside of 
the operating envelope

• More automation less human input – “Self Sufficient”

• Application needs to be pragmatic – it needs to integrate into 
current practices and be easily useable, not be a totally new 
workflow

• M&D good at telling you things that are degrading, but real 
challenge is one-off events

• Since we are providing probabilities of failure, will want to watch out 
for “false positive-type” situations for the one-offs

• Need to be sure to consider downstream components –
especially equipment that may be shared across units at the plant, 
such as boiler feed pumps that may be shared among two HRSGs

11



Understanding the Data is Key
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Pedigree information

• Unit characteristics that can influence 
performance/risk of failure (e.g., fuel types, duty 
cycles)

• Includes plant arrangement and applications
• Characteristics may change over time (e.g., 

turbine gas path upgrades, inlet cooling)

Events

• List of outage events
• Start and end time
• Outage duration
• Type of event (forced, maintenance, planned)
• Thousands of component codes
• Ability to filter to events of interest

Operations

• Periodic operational data (nominally monthly)
• Useful for identifying impact of short time scale 

operations on risk
• Starts and hours
• Produced power
• Large dataset

Age

• Cumulative age at the end of each period
• Time at temperature (fired hours) and cycles 

(starts/trips from load)
• Used for assessing life consumption
• Useful for assessing likelihood of certain events 

versus long time scales

• ORAP RAM (Reliability, Availability, and Maintainability) is a complex
dataset that tracks plant operational, performance, and event data

What They Are What Happened

How Operated (in the 
last period)

How Old



Understanding the Data is Key (cont’d)

• Similar units can 
show different failure 
pattern

• How can we learn 
from historical 
failures of many 
units?  
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UNIT#6149

Similar Metadata

Different Failure Pattern

UNIT#5646



ML: Independent yet Synergistic Approaches

• Approach 1: Failure Trend Forecasting Model (Major System)

• ML Process – Random Forest

• Provides pattern of how failures accumulated over time

• Leads to a set of failure predictions

• At the Major System Level

• Approach 2: The Next Failure - Equipment Code Prediction Model

• ML Process – Long Short Term Memory (LSTM)

• LSTM chosen because it captures the temporal dependencies in the 
dataset

• Predicts the Equipment Code at the Next Failure

• At the Component Level
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Machine Learning: Data Preprocessing
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Pedigree (What 
They Are)

Event (What 
Happened)

Operation (How 
Operated)

Age (How Old)

Joined Data

Join Key = Unit Key

Filtered & Joined 
Data

• Focus on Historical Failures
• Filter out Unnecessary Data

Approach 1: Failure 
Trend Forecasting 

Model (Major System)

Approach 2: The Next 
Failure - Equipment 

Code Prediction Model



ML Approach 1: Failure Trend Forecasting
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• Failure (unplanned disruption of unit operation) can lead to reduced service 
hours and revenue loss

• Objective: predicting the trend of the cumulative # of failures for the next n days 
(e.g., 120 days)

Unit 1

Historical Failures
…100

0+ 
Uni
ts

Unit X

Next Failures

days

Unit n

Learning

ML Models

Latest Failure

Can ML models forecast when will be the next 
failures?

Age

Past Future 

F
a

il
u

re
#



• A Closer Look

• Continuing work from the previous HPC4Materials project

• In the last project, we predicted trend of total cumulative failure 
count, but we need to look at failures in more detail (i.e., which 
major system is related)

ML Approach 1: Failure Trend Forecasting (cont’d)

Unit KEY: 430401541200133934917
Failures related to Major System Code: GT
at 2020-11-12 14:30:00

Major System Code: SE

Major System Code: HR

Major System Code: GN

?

Today



?

Today

• Getting the data ready: Generating many datapoints (X, y) 
from historical data to train ML models

• We train ML models to learn how Age/Ops/Unit data affect the 
increases of failure counts

• We used Random Forest regressor model with empirically 
selected set of age, ops, unit data variables

ML Approach 1: Failure Trend Forecasting (cont’d)

…

X:
Unit Metadata (plant unit count, 
maximum capacity, etc.)  
ΔAge (# of starts, hours, etc.)

y: 
ΔFailure (# of failure increased)

All possible pairs



ML Approach 1: Failure Trend Forecasting (cont’d)

Red : Failure Data Included for Training
Blue : Failure Data not included for Training for validation
Cyan: Prediction from the model

Results using 80% of Data for training/20% of Data for validation
Prediction for the next 120 days

Major System Code: SE

Major System Code: HR

Major System Code: GN

Major System Code: GT

Hyperparameter tuning of ML model is required



ML Approach 2: Equipment Code Prediction
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• Approach 2 focuses on a different problem

– This approach only focuses on predicting what EQUIPMENT CODE will be related to 
the next failure event?

– Classification problem

• vs. Approach 1

– The models learn from the whole data not filtered data

– The models learn from the sequences of events (Train with LSTM)

• Reorganizing the data for Approach 2

EQUIPMENT CODE at 
the next failure (not 
available at the time, so 
we predict this)

Long short-term memory (LSTM) is an artificial recurrent neural 
network (RNN) architecture[1] used in the field of deep learning (DL). 
LSTM can process not only single data points, but also entire sequences 
of data

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Long_short-term_memory#cite_note-lstm1997-1
https://en.wikipedia.org/wiki/Deep_learning


ML Approach 2: Equipment Code Prediction (cont’d)

Example Predictions: Generate ranking of equipment 
codes with likelihood at each level of Equipment Hierarchy
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Component  Answer: HRFHEV312

1 HRFHEV312 0.20087

2 GTCTSF001 0.02975

3 GTLOFL231 0.02528

4 GTFPPI 0.02474

5 SEG1IC166 0.02469

6 GNGLFL231 0.02248

7 GTIAFS441 0.01905

8 GNGHIC 0.01616

9 GNGNSR 0.01565

10 GTCPIC001 0.01410

Major System Answer: HR

1 GT 0.45914

2 HR 0.31367

3 SE 0.12327

4 GN 0.1038

System Answer: HRFH

1 HRFH 0.20429

2 GTCT 0.074

3 GTLO 0.04898

4 SEPD 0.04437

5 GTFP 0.04152

6 SEG1 0.03705

7 GTGF 0.03592

8 GTCP 0.03398

9 HRRH 0.02863

10 GNGL 0.02535

Component Group Answer: HRFHEV

1 HRFHEV 0.20087

2 GTCTSF 0.03393

3 GTCPIC 0.03236

4 SEG1IC 0.02696

5 GTLOFL 0.02528

6 GTFPPI 0.02474

7 GNGLFL 0.02248

8 GTGFIC 0.02016

9 GTLOPC 0.01914

10 GTIAFS 0.01905



Machine Learning Approach 2:
Equipment Code Prediction Model (cont’d)
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• What does accuracy mean? 
• When the model says the next 

failure will be related to a 
C/CG/S/MS, how likely that to 
be correct

• Measured by Hit Ratio @k

• Hit Ratio (HR) @ k means the 
ratio of getting the right answer 
within the Top k ranking list

• The chance of Top 10 list will 
contain the correct system 
code is 49% (It’s a challenging 
problem)

HR@1 HR@3 HR@5 HR@10

C: 0.129 0.186 0.217 0.261

CG: 0.132 0.194 0.235 0.315

S: 0.141 0.260 0.361 0.491

MS: 0.481 0.885 1.000 1.000

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

Accuracy

C: CG: S: MS:

Hyperparameter tuning of ML model is required



Weibull Sensitivity Analysis (Validation)
• A Weibull model was made for each equipment code in the ORAP 

database

• For each plant, the machine learning model developed by ORNL 
and the conventional, Weibull model were used to predict the next 
10 highest risk events based on each model. 

• There is an improvement in predictive accuracy using the machine 
learning approach developed. 
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Weibull Distribution: Thermocouple Exhaust Temperature 
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• Includes all forced 

outages for this 

equipment code

• Weibull reflects the 

forced outage history

• Why does the 

Weibull apparently 

under-predict at low 

fired hours?

• ML can help inform 

the model

(since last forced outage for this equipment code)



ML-Informed Weibull: Thermocouple Exhaust Temperature 

25

• Supplemented the 

forced event dataset 

with ORNL’s ML 

predictions

• ML predictions look 

reasonable

• ML captures the 

trend we saw

• This Weibull better fits 

the forced outage data

• outliers are better 

accounted for
(since last forced outage for this equipment code)



ML Model Validation

• ML Model was run with 3 time periods for a fleet of units 
• The time periods represent addition of new data to the previous sample:

• Period from 1/1/2010 to 8/2/2022

• Period from 1/1/2010 to 10/11/2022

• Period From 1/1/2010 to 2/1/2023

• Each time period was also run for different groups of downtime event 
types:

• All Downtime Events

• All Scheduled Maintenance Events

• All Unscheduled Maintenance Events

• All Forced Events

• All Trips from a state of operation

• Each sample was run 10 times on different PC Hardware
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ML Model Validation (Cont’d)

• Validated the models are consistent and repeatable:
• Models return the same results with a statics sample regardless of when 

the model run and on what hardware.

• Reviewing clearly shows value is in prediction of Unplanned 
Events: Forced Events and Trips from Operation.

• Planned Events are scheduled and are deterministic & Forced Events are 
probabilistic and ‘random’.

• How maintenance is performed influences forced outages, value is to 
identify next likely failure so it can be mitigated.

• How model predicts based on the fleet experience vs individual 
unit operations is weighted too much to the fleet
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ML Model Improvements

• Validation has identified specific items necessary for operating in a 
production environment, including:

• Current version of the model has data set ‘filters’ hardcoded – this needs 
to be driven by the model input

• Equipment being included in model (e.g. Heavy Duty Frame Units v Aero-derivative 
Units)

• Exclusion of specific causes of outages that are not equipment related (e.g. lighting 
strikes) 

• Need to update the starting point for predicting trends based on ‘current 
data’ for unit, currently model utilizes one date for all units in sample.

• Need to tune models to weight individual unit operations more
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SPS Perspective

• ML process  (Macro modeling) –
• Maximizes use of times series & curated data available in ORAP
• Uses ‘fleet and unit” specific data to derive patterns, trends, and predictions
• ORNL two approaches (Random Forest & LSTM) provide independent but 

correlative evaluation of results
• Does not require re-initialization as equipment changes are made (Major Benefit)

• APR process (Micro modeling) –
• Focused on a unit not a fleet (not even a group of units)
• Need robust analog sensors across systems and components
• Sensor data is independent – Requires strong SME
• Does not predict – it infers

• ML forewarns ahead of APR
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What’s Next?

• ORNL to complete work on the ML models including:
• Hyperparameter tuning

• Incorporating updates/improvements that have been identified during review and 
validation 

• Incorporate Event Duration Distributions with ML Results

• Field test ML Models at ORAP Participants when the ML Model updates are 
incorporated

• Production & Plant – Development of User Dashboards
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Questions?
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spsinc.com

Bob Steele
Vice President – Information Technology

office 704.945.4636

bob.steele@spsinc.com


