

Advanced Oxygen-Free Electrolyzer for Ultra-Low-Cost H₂ Storage for Fossil Plants

FECM Spring R&D Project Review Meeting

For

Prime Recipient: T2M Global LLC Presenters: Pinakin Patel and Ludwig Lipp Award Number: DE-FE0032023 Sub-Recipient & Host Site: Hawaii Gas, HI Date: 04/19/2023

Dilute Syngas to Higher Value H₂

 H_2 Price Premium is about 9X that of Natural Gas in USA Hawaii Gas has ~10% H_2 in SNG pipeline – new opportunity

AES Project Overview: Key Components T2M Gl bal

DE-FE0032023

Produce Higher Value H₂ from Dilute Syngas Streams:

Extend the life of Fossil Plants – Support VRE

Milestone Status: On-track

T2M	Gløbal
DE-F	E0032023

Milestone Description	Planned Completion Date	Actual Completion Date	Verification Method	Comments
Syngas streams available for AES integration at Hawaii Gas (Verify 1 ton/day recoverable H ₂ is available)	07/30/2021	9/30/2021	Gas Chromatography	Completed
Stack Operation on Selected Syngas Streams (500 hr, <15 kWh/kg)	10/31/2021	11/30/2021	kWh/kg of H ₂	Completed
HI Gas review of AES integration requirements and benefits for demonstration (Target: 1 ton/day H ₂)	3/31/2022	4/15/2022	Strategy Document	Completed
Complete Baseline design for tall stack building block (Target: 100 kg/day, 2.4 MWh)	2/28/2023	2/28/2023	Stack Design Description	Completed
Prototype MW-class module design for Hawaii Gas (Target Capacity: 1 ton/day H ₂ , <1.5 MWh/ton H ₂)	3/31/2023	3/30/2023	Module Design Description	Completed
Develop a Technology Maturation Plan for MW-class module (Target: 1 ton/day H ₂)	6/28/2023		Strategy Document	In Progress

Advanced O₂ free Electrolyzer (AES)

- Oxygen-free AES technology offers a modular system with the safest hydrogen production and the lowest Pt-catalyst loading
- AES validated at short stack level at atmospheric pressure

Strategy to Increase H2 Production Efficiency

AES Ideal for Fossil Plants: 2x Increase in Capacity and Efficiency for H₂ Production

T2M Gl🔇

DE-FE0032023

Natural Gas Consumption in Hawaii: Source of Dilute H₂ T2M Gløbal

DE-FE0032023

- Current consumption: 2.4
 Billion cu ft/yr
- At 10% injection of H₂ in the pipeline: 240 Million cu ft H₂/yr
- At 80% recovery of H₂ from pipeline: 192 Million cu ft of H₂/yr
- Potential recoverable H₂ from pipeline storage: 506.6 ton/yr

At \$5000/ton of H₂: \$2.5 Million/yr of potential revenue from pipeline storage

Source: https://www.eia.gov/dnav/ng/hist/na1490_shi_2a.htm, Internal management, subject matter expert discussion and data

AES for SNG Plant at Hawaii Gas

Recovered hydrogen for on-site power production: Export hydrogen for additional revenue – Toyota, Plug Power

AES Integration with HI Gas Plant

Current SNG Composition SNG Composition after H₂ Recovery 100 100 97.03 89.48 90 90 80 80 Composition (%) Composition (%) 70 70 60 60 50 50 40 40 30 30 20 20 9.73 10 10 2.11 0.50 0.46 0.33 0.36 0 0 СО **CO2** H2 CH4 CO **CO2** H2 CH4

Better quality SNG for export: Eliminates expensive additives Higher value H₂ for additional benefits

Benefits to Fossil Plant: >\$5M/yr

T2M Gl bal DE-FE0032023

SNG Production: 3 billion ft³/yr

Reduction in additive cost: >2 million \$/yr Revenue from H_2 : >3 million \$/yr

Flexible H₂ Extraction

~1.9 Billion ft³/yr of SNG is required for 1 ton/day H₂ Recovery Reduction in >60% of additives purchased \rightarrow Cost Savings, \$\$

T2M Gl**Ø**bal

DE-FE0032023

H₂ from Pipeline Storage: Opportunity T2M GI

DE-FE0032023

bal

Potential for >1000 ton/yr of $H_2 \rightarrow >$ \$10 million/yr revenue

Feedstocks Validated: Dilute Syngas

DOE Target Met: <15 kWh/kg to purify H₂ Very dilute syngas: $25\% \rightarrow 10\%$ H₂ in CO₂ or N₂ TEA shows feasibility of <\$4/kg in the near term

Power Consumption: Effect of Pressure T2M Gl@bal

Power Consumption Decreases at Elevated Pressures: Power requirement for SNG plant: <5 MWh/ton H₂

DE-FE0032023

Electricity Requirement: Conservative

Conservative Estimate: 10 MWh/ton → Expected to Reduce at 400 psi Energy content per ton of recovered hydrogen: 33 MWh

T2M Gl🚳

bal

© 2017-23 T2M Global

H₂ Capacity Scaleup: Current Density

Design consideration for increasing the current density:

- Increased stack heat generation
 - Requires additional cooling
 - Increases challenge of thermal management to distribute heat uniformly across each cell
 - Adds constraints to material selections
- Tolerance Management Risks:
 - With increase in current density, tolerance management becomes more important and complex

Higher Current Density \rightarrow Beneficial \rightarrow Higher Risk Higher current density reduces CapEx, increases cooling requirements

Fuel Cell Plant in Danbury, CT

Modular plant for rapid field installation Good example for AES design for deployment

© 2017-23 T2M Global

H_2 Capacity Scaleup: Stack \rightarrow Module

Supply Chain is Critical in Capacity Scale-up Near-term 1000 cm² area \rightarrow Mid-term 3000 cm²

© 2017-23 T2M Global

H₂ Production with Storage

Low, Medium and High-Pressure Storage Provides Flexibility Modularity provides easy capacity expansion

© 2017-23 T2M Global

Fossil Plants: Fueling the H₂ Economy

H₂ fuel cells are emerging as a multi-billion-dollar industry

Opportunity for HI Gas: Increase Value of SNG Reduce operating cost, increase revenue from higher value

H₂ Storage: Impacts and Next Steps

- Fossil Plants cannot load follow: H_2 is a solution \rightarrow grid support market
- Application Flexibility: Higher value H₂ from different syngas streams,
 e.g. coal gasifiers, GTL plants, Naphtha crackers, Pet-coke, SMRs, etc.
- H₂ production without any incremental GHG emissions
- Convert excess electricity and waste heat to higher value hydrogen
- Modular and water independent system: Easier to deploy
- Next Step: Demonstration at Hawaii Gas (1 ton/day class)

Opportunity for FECM \rightarrow **\$10 Billion/yr US Market** Opens pathway to DOE target for H₂: 1-1-1

Thank you!

Open for Questions

Converting Wasted Resources to Clean Energy

Pinakin Patel www.t2mglobal.com ppatel@t2mglobal.com