

Development of Functionally Graded Transition Joints to Enable Dissimilar Metal Welds

FEAA-151

Peeyush Nandwana Group Leader, Materials for Advanced Manufacturing Group

Rangasayee Kannan, Thomas Feldhausen, Yousub Lee, Andres Rossy, Christopher Fancher, Brian Jordan

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Transition Joints: Hybrid Materials in Power Generation

- Ferritic (cost-effective) and austenitic (high temperature performance) steels are used in power generation plants
- ≻Challenges:
 - Coefficient of thermal expansion (CTE) mismatch
 - Carbon migration across the interface

≻ Mitigation:

Nickel based alloys used as weld filler material to mitigate CTE mismatch

Seifert et al. 2016

Transition Joints Enabled by AM: Continuum

- Existing work focused on linear changes in composition
- Sridharan et al. reported an increase in hardness in the gradient region
- Zuback et al. observed a hardness gradient across the transition zone

Brentrup & DuPont, Welding Journal, 2013 Galler et al., Met Trans A, 2019 Subramanian et al., Welding in the World, 2021

Linear Grading: More Gradual Composition Change Results in Shallower Carbon Chemical Potential Gradient

Practical considerations change things

What is the minimum distance over which composition can be changed? (typically, ~2mm)

Keep the length of the transition zone as small as possible – AM is expensive still!

Is linear composition change the most efficient?

CALPHAD Design Approach

5

How To Decide Composition Changes?

Equilibrium calculations conducted at every 10% step and phase fractions determined

Variations in coefficient of thermal expansion calculated at each step

Step Change in CTE Variations Advice Composition of the Transition Zone

CTE Changes Transitioning Away from 347H

CTE Changes Transitioning Away from G91

Carbon Chem. Potential & Depletion Zone Lower for Non-Linear Composition Change

Non-linear

Lower Residual Stress in Non-Linear Transition Joint

- Transition joints deposited using a BeAM Modulo 400 Blown Powder AM system
- Joints deposited with 50/50 (3 sections) transition zone or a gradation of 80/60/50/40/20 (7 sections)
- Cracking observed in 347H but not in the transition zone or G91
- Tubular geometry deposited and currently under evaluation for understanding geometry impacts on defects and microstructure

Characterization of the Fabricated Joints

11

Characterization of the Non-Linear Joint

IPF map

- In the 80%347H-20%G91 region, dual phase region exists
- Significant microstructural refinement in the transition zone

Tensile Behavior of Composite Structure in As-Fab and
PWHT Condition700Non-linear transition - As-fab

Gage length contained transition zone as well as base metal regions from SS347H and G91 steels

PWHT conducted: 750 °C for 45 min followed by air cooling

Cracks in SS347H region result in lower elongation to failure

No difference between as-fab and PWHT conditions

Strain Localization Near the SS347H Region

- Tensile sample extracted from the transition zone
- Strain localization in the 80%SS347H-20%G91 region

14

Significant Strain Hardening and Twinning in the Failed Section

15

U.S. DEPARTMENT OF

Pressurized Tube Creep Testing

16

Different cross-section thicknesses used to equate rupture time in all sessions

Measured strains were the highest in G91 section and eventually caused failure

Ongoing Creep Test at 100 MPa and 650 °C

Time (hours)

Sample tested in as fabricated condition

Test ongoing – comparable to conventionally fabricated Grade 91 alloy

Stress Evolution with Temperature

Build Dir

- ➢ Residual stress is higher in as fabricated condition
- Stress reduces during HT (sample was heat treated to 650C and then cooled to room temperature)
- Stress changes from tensile to compressive upon heat treatment

Conducted on a planar wall

Normalized Distance

0.4

0.6

0.8

1.0

0.2

Summary

- A linear gradient might not always have the lowest carbon chemical potential and carbon depletion
- Failure appears to occur via twinning in the zones closer to \$\$347H
- Residual stresses change from tensile to compressive when the sample is heat treated to 650 °C

Thank you

This work was supported by the US Department of Energy, Office of Energy Efficiency And Renewable Energy, Advanced Manufacturing Office under contract number DE-AC05-00OR22725. The work was also funded by the Department of Energy and Carbon Management under project number FEAA151

Pressurized Tube Creep Testing

21

Larson-Miller approach used to determine creep stress of 165MPa for SS347H and 103MPa for G91 for a stress rupture time of 500h at 650 °C

Therefore, different cross-section thicknesses used to equate rupture time in all sessions

Measured strains were the highest in G91 section and eventually caused failure

No	Temp (C)	P (psi)	P (MPa)	T_inc (h)	T_acc (h)
1				0	0
2	650	6,710	46.25	1	1
3	600	6,680	44.06	24	25
4	400	6,680	44.06	167	192
5	400	6,680	44.06	738	930
6	650	6,710	46.25	37	967

Tensile Behavior

Non-standard tensile samples extracted (SS1 gage length and SSJ3 grip geometry)

Enabled capturing transition zone as well as base material in the gage length

22

