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DMWs in A-USC, HRSG, others

GE Steam: A-USC Mock Header

Program on Technology Innovation: Guidelines and
Specifications for High-Reliability Fossil Power Plants—
Best Practice Guideline for Manufacturing and
Construction of Grade 91 Steel to Austenitic Stainless Steel
Dissimilar Metal Welds 3002007221 Final Report,
December 2017

DMW:
1. Grade 91 – Austenitic Stainless Steel
2. Ni based alloy – Austenitic Stainless  Steel
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Mismatch of coefficient of thermal expansion and
thermal cycling:

DMW with sharp material  transition

Higher cycling requirements in 

the power industry:

Total # of cycles of 

25  years

Cold Start 455

Warm Start 910

Hot Start 4550

• Steam Boilers: A sample  

required a number of cycles 

for a  new unit

Total # of cycles of 

25  years

Cold Start 250

Warm Start 1250

Hot Start 4250

• HRSGs: Typical required  

number of cycles for a 

cyclic  operating CCPP

❖ Mismatch of the coefficient of

thermal expansion between

different materials leads to a high

strain range along the interface

during thermal transients.

❖ Increasing demand in the

industry for flexible operation of

steam boilers and more cycling

capability of HRSGs.
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Current Dissimilar Metal Welds (DMWs)

▪ Failures in DMWs at the fusion boundary

between Grade 91 and nickel-based filler

metal, often accompanied by considerable

damages in the HAZ of Grade 91.

▪ HT exposure during PWHT or service causes

carbon diffusion from the ferritic matrix toward

the austenitic matrix. This leads to the

formation of a carbon-depleted soft zone on

the ferritic side and nucleation/growth of

carbides on the ASS side that have very high

hardness.

▪ Under imposed residual, external, and thermal

stresses caused by the CTE mismatch

between different alloys of the DMW, creep

and/or creep-fatigue cracks can occur along

the fusion boundary and HAZ.
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AM-Graded Transition Joints (GTJs)

❑ “Conventional” AM (wire or powder) approach melts

alloys A&B completely together

• A critical issue is the continuous transition in composition creates

complex and often undesired microstructure.

Grade 91
0.08C-9Cr-1Mo-0.4Ni

SS304
0.08C-18Cr-8Ni

❑ “Conventional” melting-based AM

Ni%

Ni%

Cr%

Cr%

0.08C-14Cr-4Ni-0.5Mo:

Microstructure?

From: DuPont, Babu, Feng, 2018

Undesired  
hardness
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Advantages of AM-GCTJ

• Solid-state Process, composites

material” transition with

constituents of known chemistry

(such as P91, SS304, A282)

mixed in controlled proportion

•Solved the critical drawbacks of

undesired/unpredictable

phases/microstructure in the

conventional AM approach to

fabricate the transition joint

• 100% smooth transitions

• Welding happens at A-A, and

B-B, no DMWs

• Minimize scale-up issues

expected to manufacture large

quantities of joints

* U.S. Patent Appl. No. 62/704,965 – Method to Produce an Additively Manufactured-Graded CompositeTransition Joint

Alloy A Steel BAM-GCTJ

Illustration of DM weld in power plants
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PROJECT OBJECTIVES – PHASE II

(1) To develop and demonstrate at the lab-scale the additively  

manufactured graded composite transition joints (AM-GCTJ)  

for dissimilar metal weldments (DMW) in next generation  

advanced ultra-supercritical (A-USC) coal-fired power plants,  

that can significantly improve the microstructural stability,  

creep and thermal-mechanical fatigue resistance, as  

compared with their conventional counterparts;

(2) To manufacture and test the components with AM-GCTJ, to  

advance the technology readiness level to TRL-7, and  

manufacturing readiness level to MRL 6-7, for targeted  

commercial applications identified by GE Steam Power, the  

primary industry partner of the project team
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ASME Code Case (CC) on TJ - Plan

• ASME Transition Joint Code Case (CC) development effort

o Conformance with Standards and Codes is required for legal compliance.

o ASME CC is effective immediately upon ASME approval and does not

expire, i.e., it is not limited by Code book publication cycles.

o This effort has been initiated.

• ASME CC mechanical testing plan and test data generation

o CC testing support data package will be generated using coupons.

❑ Three independent “heats” of transition joints (TJ)

❑ Baseline conventional DMW for comparison

o High temperature time-dependent and time-independent properties are

required for developing the Code case.

▪ Creep testing matrix for the TJ and comparison with DMW with

selected conditions

▪ Tensile tests at room temperature and elevated temperatures

8
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ASME Code Case on TJ - Plan

Plan for ASME Code Case

o Level 1: Treat the TJ as a new fabrication process, not for new material,

to obtain a CC within a reasonable time (targeting 12-24 months after CC

submission).

o Level 2: Addition of optimized AM-TJ with CC revisions.

ICWE Model Guided Design of AM-TJ in support of the development of

ASME Code Case

o Apple ORNL’s ICWE modeling tool to optimize TJ geometry design details

for joint mechanical performance.

❑ Optimize for creep, creep-fatigue, and thermal fatigue behaviors

❑ Flat plates, pipes, and other component geometries

Component-level testing and demonstration

o Pipe components fabricated with AM-TJ will be tested in a testing loop

with temperature and pressure transients designed to represent

operational conditions.

o Information collected from the component testing will demonstrate the

viability of this new technology.
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ICWE Model Guided Design – Creep 

Characterization 

• Transition joints exhibited significantly improved creep life 

compared to traditional DMW at 650 ℃ and 90 MPa

e
x
x
 (
%

)

0.0

12.0

Experiment: 

lifetime 214 h

Numerical results: 

lifetime 225 h

• Conventional DMW

Grade91 304

5 mm

650 °C-90 MPa, t = 1420h

650 °C-90 MPa, t = 1650h

Experiment: 

lifetime 1420 h

Numerical results: 

lifetime 1650 h

• Transition Joint (finger shape)

• Transition design leads to > 5 times life enhancement by reducing the stresses in the 

transition region; as a consequence, the failure location was shifted to the base 

material of Grade 91 steel  

Fail in HAZ

Fail in base 

metal of Grade 

91

DIC

FEA
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ICWE Model Guided Design – Creep Testing for 

Supporting ASME Code Case 

• Creep performance of Grade 91 – 304 transition joints simulated for 

a selected testing matrix for short-term to long-term creep properties

❑ Simulations

• A transition joint (dt = 2.0 mm,

d0 = 1/4 ”, h =1 ”) vs DMW

• Failure criteria: creep fracture

in Grade 91 steel and stress

failure in 304

• Transition design results in

significant creep life

improvement compared to

the conventional DMWs

under all testing conditions

• Creep life of the transition joint

approached the life of the less

creep-resistant base material

• Creep life enhancement

shows a strong dependence

on the testing temperature

and stress levels



ICWE Model Guided Design – Short-term vs  
Long-term Creep Performance

Ramp up 

temperature

Apply load at 

650oC
Failure

Creep test at 650oC,

90 MPa, relatively

short-term creep

dominated by power

law creep

Creep test at 650oC,

40 MPa, long-creep

creep governed by

diffusion flow creep

Stress evolution Damage development

❑ Short-term and long-term creep: deformation

mechanism changes from power-law creep to

diffusion flow creep

• Short-term creep: creep damages accumulated in

base material of Grade 91

• Long-term creep: creep damages accumulated in

both transition zone and base material of Grade 91

❑ Deformation of TJs:

• Ramp up temperature: thermal expansion mismatch results in 

high thermal stresses in transition region; higher stresses in 

Grade 91

• Apply and hold the load at 650 ℃: higher stress in Grade 91 

because of its high strength while applying load; stress relaxed 

during holding period; load gradually transfers to 304 due to its 

high creep resistance; creep deformation and damage build-up

Grade 91

304

Grade 91

304



ICWE Model Guided Design – Geometric 
optimization of GCTJ

• Thermal expansion mismatch-induced stress in the TJ 

may extend beyond the TJ zone into the adjacent metal. 

• Determine the length requirement to achieve thermal 

stress-free at the transition joint piece ends

• 0.5” transition zone • 1” transition zone • 2” transition zone

• Different length transition joints exhibited a similar profile of thermal stresses, which are high in the

material transition zone and gradually decrease towards the base materials of P91 and 304

• Thermal stress-free zone can be achieved at a distance of ~40 mm from the transition zone of both P91

and 304 sides for all three joints
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ICWE Model Guided Design - Summary

• Through ICWE-guided design, AM-GCTJs would have

significant creep life improvement than that of the

conventional DMWs

• Creep lifetime improvement shows dependence on testing

temperature and stress levels; the underlying deformation

mechanism changes from dislocation creep deformation (short-term

creep) to diffusion-controlled creep (long-term creep)

• The robustness of AM-GCTJ: it can achieve significant

improvement over the conventional DMW under fairly broad

geometric details of the TJ zone, approaching the life of base metal

• Fabrication length of the AM-TJ to minimize the thermally

influenced zone on both ends of based materials

• ICWE-guided design analysis in support of ASME code

case (CC) development
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❑ Laser powder bed fusion (LPBF) system at UNL

Preparation of Lab-Scale GCTJ 

Lumex Avance-25 Metal 3D Printer

- 40-400-Watt Yb fiber Laser

- Beam mode quality (M2) < 1.1

- Wavelength: 1070 nm

- Galvano scanner system

- Hybrid additive/subtractive manufacturing

- Nitrogen or argon atmosphere

- Position accuracy: ± 2.5 μm

- Layer thickness: 50 μm to 80 µm

▪ Capabilities

- Spindle speed range: 450 to 45,000 RPM

- Spindle bearing inner diameter: 25 mm

- 1/10 taper special BT20 tool shank

- Max spindle torque: 0.7 N-m

- Linear feed rate: 1-30,000 mm/min

▪ Machine specification

▪ Laser specification

https://www.lumex-matsuura.com/english/lumex-avance-25
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Preparation of Lab-Scale GCTJ - Powder

304H powder: 10-45 μm

(vendor) 

❑ SEM of 304H powders
Vendor: Atlantic Equipment Engineers 

300 μm

100 μm

100 μm 20 μm

20 μm
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Preparation of Lab-Scale GCTJ - Powder

❑ SEM of P91 powders

300 μm

100 μm

100 μm 20 μm

20 μm

Vendor: Atlantic Equipment Engineers 

P91 powder: 10-45 μm (vendor) 



Microstructure Analysis - AM-GCTJ

❑ Microstructure of 304 & P91 AM-GCTJ (as received)

➢ Both 304 and P91 are with no obvious pores, and the adhesion

between 304 and P91 is good without any visible gaps

304 P91

Austenitic
Lath 

Martensite



Microstructure Analysis - AM-GCTJ

❑ Microstructure of 304 & P91 AM-GCTJ (After Heat Treatment)

304 P91

➢ 1040oC 1h (AC), 760oC 2h (AC) was adopted as the heat treatment.

➢ Narrow interface (~40 μm) between 304 & P91 was observed in the

TJ.
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Microstructure Analysis - DMW

❑ Microstructure of 304H & P91 DMW

➢ Abrupt microstructure change in DMW.

304H P91
ER309
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Microstructure Analysis - DMW

❑ Microstructure of 304H & P91 DMW

304H

Base Metal

P91

Base Metal

P91

Base Metal

FGHAZ

ER309

FGHAZ

ER309

304H

Base Metal

ER309

304H

Base Metal

➢ Wide Heat Affected Zone (~300 μm) of P91 was observed in DMW.   
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Heat Treatment Assessment – Tensile Strength

❑ Tensile strength of 304H sample at room temperature (RT) and 650oC

▪ Ultimate tensile strength (UTS) of heat treated (T) and non-treated (NT)

304H is 630-710 MPa at RT, close to the value provided by the vendor

(611 MPa).

▪ UTS of 304H are almost same before and after heat treatment, in the

range of 302-327 MPa at 650ºC.

630-710 MPa

@25 ºC @650 ºC 

302-327 MPa
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❑ Sensitization and intergranular corrosion resistance

▪ Degree of sensitization (DOS) is determined using the double-loop

electrochemical potentiodynamic reactivation (EPR) tests (ASTM

standard G108-94).

▪ DOS of 304H is increased a little after heat treatment.  

Testing condition

Potential vs

current density

of a) 304H-NT,

b) 304H-T.

• Solution: 0.5 M H2SO4 + 0.01 M KSCN

• Scan rate: 1.67 mV/s

• 304H-NT#01: 0.02%

• 304H-NT#02: 0.02%

• 304H-T#01: 1.28%

• 304H-T#02: 1.59%

Degree of sensitization

T: Heat treated 

N: Non-treated

Heat Treatment Assessment – Sensitization
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❑ Pitting corrosion resistance

• Pitting resistance is evaluated by potentiodynamic anodic polarization

tests (ASTM standard G5-14).

• Pitting resistance is decreased after heat treatment.

• Solution: 0.5M H2SO4 + 0.5M NaCl

• Scan rate: 1.67 mV/s

• Scan range: corrosion potential to 1.2 V

Testing condition 

304H-NT 304H-T

Pitting potential (V) 0.569 0.494

Passivation current 

(mA)
0.02072 0.0353

Heat Treatment Assessment – Sensitization
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❑ Pitting corrosion resistance

Optical images of pits: (left) 304H-NT, (right) 304H-T 

• Pit area percent: 304H-NT (13-20%), 304H-T (23-26%)

• Pit depth: 304H-NT (53-69 μm), 304H-T (63-78 μm)

• Pit morphology is characterized using 3D optical profilometry.

• Pit area percent and depth is increased after heat treatment.  

Heat Treatment Assessment – Sensitization
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Microstructure & Heat Treatment - Summary

• The bonding interface of AM-GCTJs is much narrower

than that of DMWs

• Good connecting between 304H and p91.

• Eliminate the heat-affected zone (HAZ) which is vulnerable to

creep cracks.

• Heat treatment for 304H & P91 AM-GCTJs does little hurt

to their strength and intergranular corrosion resistance of

304H

• Ultimate tensile strength (UTS) of heat-treated (T) and non-treated

(NT) 304H tested at room temperature is close to the value

provided by the vendor and the UTS of 304H-T and 304H at 650oC

is close to each other.

• The Degree of Sensitization increased a little after heat treatment.

• Heat treatment affects the pitting resistance of 304H due to

sensitization.
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❑ Pitting Corrosion

➢ ~1 mg/cm2 Na2SO4+ MgSO4 (55 at%:45 at%) as deposited salts were 

applied on the surface of DMW.

➢ Localized hot corrosion initially happened in the form of pits along the

HAZ of P91 in DMW.

After 4 h

Depth of pits: 43 μm

Localized Hot Corrosion Resistance 

Comparison - DMW

2 h 4 h 8 h
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Ridges Pyramids

SS304
H

IN617

❑ Stress before being removed from the build plate

Prototype GCTJ Development - Process Simulation
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Ridges Pyramids

SS304
H

IN617

❑ Stress after being removed from the build plate

Prototype GCTJ Development - Process Simulation



30

Ridges Pyramids

SS304
H

IN617

Prototype GCTJ Development - Process Simulation

❑ Strain after being removed from the build plate
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• Future Inputs that could improve analysis:
o Machine specific print rotation angle

o Machine specific print layer height

o Physical cantilever testing to improve inherent strain values

• Points of interest are:
o Vertical edges for all specimens

o Base of pyramid specimens

• B vs A geometries:
o Very similar equivalent stress magnitudes

o Similar stress and displacement distribution

• SS304H vs Inconel 617
o Higher peak stress in Inconel 617

o Larger deflection in SS304H

o Similar average stress between materials

Process Simulation - Summary
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Summary

▪ We designed and fabricated a new class of

AM- GCTJ

– Optimize the geometry of GCTJ by the ICWE model

– Avoid the wide heat-affected zone compared with DMWs

– Improve the microstructure by reasonable heat

treatment

– Significantly enhance creep resistance, as compared

with conventional DMW

▪ AM-GCTJ has broad applications in various

energy systems, AUSC, Gas, CSP, NE, etc.



33

▪ Investigate the interfacial diffusion between P91 and 304, 282 

and 304

▪ Optimize the heat treatment process of AM-GCTJ for 304&282

▪ Continue the characterization of thermal-fatigue and creep test of 

the AM-GCTJ and optimize the design of AM-GCTJ

▪ To manufacture and test the components with AM-GCTJ, to  

advance the technology readiness level to TRL-7, and  

manufacturing readiness level to MRL 6-7

▪ Work on detailed TEA and start code case

Future Plan 
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