Durable and High-Performance SOECs Based on Proton Conductors for Hydrogen Production

DOE project award: **FE0032115** Project manager: **Evelyn Lopez**

Zheyu Luo, Xueyu Hu, Nikhil Govindarajan, Doyeub Kim, Humphrey Lin, Yucun Zhou, and Meilin Liu Georgia Institute of Technology

> 2023 FECM Spring R&D Project Review Meeting Pittsburgh, April 18-20, 2023

Outline

- Background & Challenges
- Project Objectives
- Technical Approach
- Highlights of Accomplishments to Date
- Recent Progress
 - Development of catalysts to enhance catalytic activity and durability
 - Understanding the mechanism of electrode processes
 - Rational selection of dopants for better electrode & catalyst materials
- Summary and Future Work
- Acknowledgment

Challenges for Proton Conductors

- BaZr_xCe_{0.8-x}Y_{0.2-y}Yb_yO_{3-δ} (BZCYYb)
 Performance is limited by a tradeoff between stability & conductivity
- BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-δ} (BZCYYb1711)
 - Achieves high conductivity and \mathbf{t}_{H}
 - But questionable long-term stability during electrolysis
 - BZCYYb4411 is more stable but less conductive
- BaHf_{0.8}Yb_{0.2}O_{3-δ} (BHY82)
 - Excellent stability against high concentration of H₂O/CO₂
 - But relatively low conductivity
- The optimal composition for **bulk** and **surface** should be different.

The bulk is optimized for conductivity while the surface is for stability.

BHYb82	
BZCYYb1711	

Objectives

- To develop and optimize a surface modification process (sputtering, SSG, ALD) for deposition of conformal coatings on electrolyte/electrode surface with controlled composition and morphology
- To characterize the electrochemical properties of surface-modified electrolyte/electrodes under typical operating conditions and correlate the properties with the microscopic features of the coating
- To develop and optimize surface modification layers that greatly enhance stability while maintaining high electrochemical performance
- To synthesize the information in order to establish the scientific basis for rational design of *durable* electrolytes, electrodes, and catalysts for rSOCs

Technical Approach

Accelerating Materials Discovery via Machine Learning

- Rationally select dopants for better electrode & catalyst materials
- Unravel the mechanisms of transport and electrode processes

A Two-Stage Machine Learning Model

The 1st stage involves predicting the high-throughput calculation property based on the chemo-physical properties of 4,455 different materials.

The 2nd stage: data obtained through computational methods are included as input to predict the polarization resistance.

Current status: collected polarization resistances of **426** materials for the second-stage machine learning

Xueyu Hu's Poster on Preliminary Results

- Successfully predicted E_{hull}, *p*-band center, *d*-band center, and Ev using the combination of high-throughput calculation and machine learning models.
- Notably, the *d-p* band overlapping area is identified as a critical factor influencing the polarization resistance.
- The predicted promising materials, e.g., X-doped PBC, displayed outstanding performance as an oxygen cathode for rSOCs.

Technical Approach

Cell Design and Fabrication

Catalysts

22

Infiltration and step-sintering

Infiltration optimization parameter

- Molar concentrations
- Catalysts loading
- Various polymers as surfactant
- Surface-decorated catalysts on the porous electrode

Bar-type air electrode

- Well-polished the electrode surface
- Relative density (> 97%) of bar-type sample
- Contaminants (H₂O and Cr)
 - Steam concentrations: 3% to 30% H₂O
 - Cr source: Crofer 22
- Model Cells
- 1) Fresh sample
 - As-prepared PBCC bar
- 2) Annealed sample
 - at 600 °C with 30% $\rm H_2O$ with Cr for 50h and 100 h

9

Testing Cell and Characterizations Set-up

Electrochemical Impedance Spectroscopy (EIS) with Distribution of Relaxation Time (DRT) method

Tasks and Project Schedule

Test Description			Year 2							
lask Description	MS	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9
		Sep Oct Nov Dec	Jan Feb Mar	Apr May Jun	Jul Aug Sep	Oct Nov Dec	Jan Feb Mar	Apr May Jun	Jul Aug Sep	Oct Nov
Task 1.0: Project Management and Planning		•								
Subtask 1.1 Project Management Plan Subtask 1.2 Technology Maturation Plan	1.1 1.2									
Task 2.0: Design and Optimization of Proton-co	nducti	ing Electrolytes		• • • •	• • •					
Subtask 2.1 Novel Proton-conducting Electrolytes Subtask 2.2 Bi-layer Electrolytes	2.1 2.2									
Task 3.0: Development and Optimization of Air	Electr	rodes								
Subtask 3.1 Development of High-performance and Durable Air Electrodes Subtask 3.2 Optimization of Air Electrodes	3.1 3.2									
Task 4.0: Development and Investigation of Cata	alysts	for Air Electro	le							
Subtask 4.1 Development of Catalysts for Enhanced Activity and Stability Subtask 4.2 Investigation of Enhanced Activity and Stability	4.1 4.2								•	
Task 5.0: Investigation of Degradation Mechanis	sms									
Subtask 5.1 Single Cell Fabrication and Degradation Mechanism Investigation Subtask 5.2 Demonstration of Durable Single	5.1 5.2									
Cells								Apr 20)23	L 11

Highlight of Accomplishments to date: Electrolyte

Developed a new set of proton-conducting electrolytes with excellent stability against high concentration of steam and CO₂ while maintaining high conductivity

 Engineered co-doping and defect chemistry for improving both conductivity and durability against high concentration of steam

 Identified co-doped proton conductors with enhanced stability and minimal reaction towards NiO; compatibility with Ni-based electrode is critical to performance
 12

Zheyu Luo's Poster on Electrolyte Development

Luo, Z., Zhou, Y., Hu, X., Kane, N., Li, T., Zhang, W., Liu, Z., Ding, Y., Liu, Y., & Liu, M. (2022). Energy & Environmental Science, 15, 2992-3003
Luo, Z., Zhou, Y., Hu, X., Kane, N., Zhang, W., Li, T., Ding, Y., Liu, Y., & Liu, M. (2022). ACS Energy Letters, 7, 2970-2978.
Luo, Z., Zhou, Y., Hu, X., Wang, W., Ding, Y., Zhang, W., Li, T., Kane, N., Liu, Z., & Liu, M. (2023). Small, 2208064

Highlight of Accomplishments to date: **Bi-layer Electrolyte**

• Demonstrated that a protective coating is effective to enhance stability while the ASR of the bi-layer electrolyte is still sufficiently low.

Well adhered and continuous over the entire electrolyte

Accomplishments to date: Electrode Materials

 Developed a composite oxygen electrode material (BPHYC) with high electrocatalytic activity and durability

- Electrode polarization resistance: < 0.2 Ω cm² at 600 °C
- Good stability in humified air

Accomplishments to date: Cell Performance in the Fuel Cell Mode

Demonstrated high performances in fuel cell mode:

Peak power density of ~1.34 W cm⁻² at 600 °C, ~ 0.4 W cm⁻² at 450°C

Very high performance even at relatively low temperatures

Accomplishments to date: Cell Performance in the Electrolysis Mode

At **1.3 V**, achieved **2.4 A** cm⁻² at **600** °C, ~0.8 A cm⁻² at **500** °C, minimal degradation over **300** h operation at 600 °C

Status of Milestones

Date	Milestone	% Complete
12/21	Complete electrolyte development with conductivity >0.01 S cm ⁻¹ in Ar $(3\%H_2O)$ and ionic transference numbers >0.95 at 600 °C.	100
03/22	Complete bi-layer electrolyte development with the durability of at least 500 h with a degradation rate of <0.5% per 1,000 h.	100
06/22	Complete air electrode development with a R_p of <0.3 Ω cm ² at 600 °C in Air (3%H ₂ O).	100
09/22	Complete air electrode optimization with a R_p of <0.2 Ω cm ² at 600 °C in Air (3%H ₂ O).	100
12/22	Complete the catalyst modification of the air electrode with a R_p of <0.15 Ω cm ² at 600 °C in Air (3%H ₂ O), and the durability evaluation for at least 500 h with a degradation rate of <0.5% per 1,000 h under the presence of contaminations (e.g., H ₂ O and Cr).	100
06/23	Complete <i>in situ</i> and <i>ex situ</i> characterization of surface morphology and surface species using experimental and modeling work to determine the activity and stability of the cells as a function of contaminant presence, relevant operating conditions, and catalyst content.	70
09/23	Complete the fabrication of button cells with a current density of >1.8 A cm ⁻² at 1.3 V in electrolysis mode at 600 °C and \ge 75% roundtrip efficiency in both SOFC and SOEC modes at \le 650 °C.	30
12/23	Complete the long-term durability evaluation of button cells for at least 500 h with a degradation rate of <0.5% per 1,000 h.	5

Recent Progress

- Developed catalysts to enhance electro-catalytic activity and durability
- Unraveling the mechanism of electrode processes
 - Deduced reaction sequence and rate-determining steps from phenomenological modeling, impedance spectroscopy, and DRT analysis
 - Estimated surface exchange rate and diffusivity from ECR measurement
 - Correlated electrochemical performance directly with surface morphology and surface chemistry (Raman)
- Accelerating materials discovery via machine learning
 - Rational selection of dopants for better electrode & catalyst materials

Recent Progress: Catalysts Development

- Symmetric cell configurations (PBCC@catalysts | SDC | PBCC@catalysts)
- Nyquist plots of various Spinel-based catalysts coated on bare air electrode in wet air at 600 °C

> Spinel-based NiCo₂O₄, FeCo₂O₄, and ZnCo₂O₄ catalysts showed good catalytic performances ²⁰

Optimization of Amount of Catalysts

- Symmetric cell configurations (PBCC@NiCo₂O₄ | SDC | PBCC@NiCo₂O₄)
- Nyquist plots of NiCo₂O₄ catalysts as function of various amount of nitrate solution at 600 °C

- > The effect of the amount of infiltration solution on the cell performance was investigated.
- > The 10 uL of infiltration solution for NiCo₂O₄ catalysts showed the lowest electrode resistances.

Stability Against Cr (Spinel Catalysts)

- Symmetric cell configurations (PBCC@NiCo₂O₄ | SDC | PBCC @NiCo₂O₄)
- ASRs of NiCo₂O₄ catalysts for long-term operation at 600 °C in the presence of Cr with 3% H_2O

- Tested Bare@NiCo₂O₄ in the presence of Cr in 3% steam
- There were insufficient catalyst amounts for 5 and 7.5 µL of NiCo₂O₄
- The degradation rate was <0.5% for catalyst derived from 12 µL NiCo₂O₄.

Development of Ruddlsden-Popper(RP) Phase Catalysts

- Symmetric cell configurations (PBCC@RP-A | SDC | PBCC@RP-A)
- Nyquist plots of Ruddlsden-Popper phase catalysts in air at 600 °C
- ASRs of catalysts for operation in wet air (3% H₂O) at 600 °C

- > The polarization resistance of RP-A catalysts was ~0.11 Ω · cm² at 600 °C.
- The degradation rate of RP-A catalysts was below 1% in wet air for 200 h operations.

Stability Against Cr (RP-A catalysts)

- Symmetric cell configurations (PBCC @RP-A | SDC | PBCC@RP-A)
- ASRs of catalysts for long-term operation at 600 $^\circ\text{C}\,$ in the presence of Cr with 3% steam concentration

When exposed to Cr in 3% steam, the La₂NiO₄ catalyst showed no degradation in over 200 h operations.

Development of Ruddleden-Popper Catalysts

- Symmetric cell configurations (PBCC@RP-B | SDC | PBCC@RP-B)
- Nyquist plots of Ruddlsden-Popper phase catalysts in air at 600 °C
- ASRs of catalysts for long-term operation at 600 °C in wet air (3% H_2O)

Surface coating RP-B reduces the polarization resistances of bare air electrodes (0.17 Ω -cm² \rightarrow 0.09 Ω • cm² @600)

Electrochemical Performances of RP-B Catalysts

- Symmetric cell configurations (PBCC@RP-B | SDC | PBCC@RP-B)
- Arrhenius plots of PBCC and RP-B infiltrated PBCC samples

Surface decorated with RP-B

Materials	Activation Energy (eV)
Bare	1.19
Bare@RP-B	0.92

Calculated activation energy of infiltrated cell and compared it with bare cell activation energy.

Stability Against Cr (RP-B catalysts)

- Symmetric cell configurations (PBCC@RP-B | SDC | PBCC@RP-B)
- ASRs of catalysts at 600 °C in the presence of Cr with 3 to 30% steam concentrations

- RP-A catalysts show expected behavior rapid degradation in 30% steam before stabilizing around ~0.25 Ω-cm².
- RP-C initially showed good performance, but the stability is poor.
- RP-B showed the best electrochemical performance and stability when exposed to Cr in 30% steam.

Surface decorated with RP catalysts

Reproducibility of Cr-tolerance (RP-B catalysts)

- Symmetric cell configurations: PBCC@RP-B | SDC | PBCC@RP-B
- ASRs of catalyst-coated PBCC exposed to Cr in 3 to 30% steam at 600 °C

- The R_p values for the two cells are relatively close, indicating good reproducibility.
- The stability test is still on-going to complete 500 h test in 30% steam, indicating the RP-B catalyst enhanced the tolerance to Cr poisoning.

pO₂-dependence ASRs (RP-B catalysts)

Symmetric cell configurations: PBCC@RP-B | SDC | PBCC@RP-B Dependence of polarization resistance R_p on oxygen partial pressure pO_2

pO₂-dependence of Impedance Spectra

The impedance for P1 and P2 are greatly reduced with *pO*₂.
 The impedance for P3 is relatively independent of *pO*₂.

Correlation between Impedance and pO_2

$$ASR = k(pO_2)^{-n}$$

Peak	Slope		Process	Ref	
	Bare				
P ₁	0.805	0.92	diffusion & Mass transfer	[1][2][3][4]	
P ₂	0.492	0.303	Dissociative adsorption & Oxygen reduction	[2][3][4]	
P ₃	0.029	0.023	Oxide ion incorporation into electrolyte	[2][3][4][5]	

- 1. International Journal of Hydrogen Energy 46.58 (2021): 30101-30111
- 2. Journal of Power Sources 283 (2015): 464-477.
- 3. J. Electrochem. Soc. 148 A433
- 4. Journal of Materials Chemistry A 10.16 (2022): 8798-8806.
- 5. J. Electrochem. Soc. 143 3554

- P1: corresponding likely to mass transfer
- P2: dissociative adsorption & reduction of O₂
- P3: transfer of oxide ions across interface

Proposed Equivalent Circuit Model

The individual steps of the electrode processes

Series inductor – represents high frequency inductance of the cell or lead wire

Series resistor – ohmic resistance of the electrolyte

RLF & QLF – mass transfer process

RIF & QIF – reduction process

RHF & QHF – interfacial charge transfer process

Characterization of Catalytic/Transport Properties

- Surface exchange coefficient (k_{chem}) and diffusion coefficient (D_{chem}) were estimated from electrical conductivity relaxation (ECR) measurement.
- Surface chemistry from Raman spectroscopy

Electrical Conductivity Relaxation (ECR) Measurement

ECR measurement system

J. Crank, The Mathematics of Diffusion, 2nd ed., Clarendon Press, Oxford, UK, 1975, p. 60

Characterization of Electrode Degradation (Cr)

K_{chem} decreased with steam concentration and the length of exposure, suggesting an acceleration of degradation with time in higher concentration of steam.
35

Summary

- ✓ Developed highly active and durable *catalysts* against high concentration of steam and Cr poisoning
 - \rightarrow Reduced electrode resistance by ~50%
 - \rightarrow Minimal degradation over 500 h against 30% H₂O with Cr
- ✓ Characterized *electrode kinetics* of surface-decorated electrodes
 - \rightarrow Surface exchange coefficients and diffusivity estimated from ECR
 - \rightarrow Deduced possible reaction steps and mechanism from DRT, impedance analyses
- ✓ *in-situ* monitored oxygen transport kinetics under Cr contaminants
 - \rightarrow High steam concentration appears to be an important factor that influences the rate of electrode degradation
- ✓ Designed and fabricated *model cells* for mechanistic studies

 \rightarrow A platform for direct correlation between macroscopic features and electrochemical performance

Future Work

Searching for suitable material candidates

Investigation of surface kinetics

Future Work

Date	Brief Description	%Complete
06/30/23	Complete in situ and ex situ characterization of surface morphology and surface species using experimental and modeling work to determine the activity and stability of the cells as a function of contaminant presence, relevant operating conditions, and catalyst content.	70
09/30/23	Complete the fabrication of button cells with a current density of >1.8 A cm ⁻² at 1.3 V in electrolysis mode at 600 °C and ≥75% roundtrip efficiency in both SOFC and SOEC modes at ≤ 650 °C.	30
12/31/23	Complete the long-term durability evaluation of button cells for at least 500 h with a degradation rate of <0.5% per 1,000 h.	5

End of Project	Demonstrate a current density of >1.8 A cm ⁻² at 1.3 V in electrolysis mode at 600 °C and ≥75% roundtrip efficiency in both SOFC and	
Goal:	SOEC modes at ≤ 650 °C. Complete >500-h operation with a	FY23
	degradation rate of $< 0.5\%$ per 1,000 n.	

Acknowledgement

Discussions with Evelyn Lopez and other DOE management team members

U.S. Department of Energy Award No. FE0032115

Thank you for your support!