

2023 FECM / NETL Spring R&D Project Review Meeting April 18-20, 2023 Pittsburgh, PA

Development of Novel 3D Cell Structure and Manufacturing Processes for Highly Efficient, Durable, and Redox Resistant Solid Oxide Electrolysis Cells

DE-FE 0032107

Sanghoon Lee, Ph.D.

Center for Energy Research University of California, San Diego

PI: Dr. Nguyen Q. Minh

• Objective

Develop and demonstrate highly efficient, durable, and redox resistant solid oxide electrolysis cells (SOECs) with a focus on

- 1) A cell design with the <u>hydrogen electrode composed of two layers</u> a 3D hydrogen electrode support layer and an exsolved perovskite hydrogen electrode active layer
- 2) A manufacturing scheme incorporating <u>advanced 3D printing</u> for fabrication of the cell configuration

3D Hydrogen Electrode

SOEC and Hydrogen Electrode

Introduction

Nickel Agglomeration/Migration

Nickel particle agglomeration

A. Zekri et al., Fuel Cells, 17 (2017) 359-366

Nickel migration/depletion

J. C. De Vero et al., J. Electrochem. Soc. 163 (2016) F1463–F1470

> Loss of electrical conductivity of the hydrogen electrode

> A reduction of available triple phase boundaries (TPBs)

20 µm

Proposed Approach

3D Hydrogen Electrode Support

atrod	luction	
ILIUU	luction	

What Do We Need for 3D Printing?

- Jetting voltage
- Frequency
- Drop

	ntrod	uction
--	-------	--------

3D Hydrogen Electrode

Ni-substituted Perovskite

Ink Rheology

• Two Inks for Inkjet printing of 3D Ni-YSZ Support

• Ink Formulation

 Viscosity / Surface tension Re We

TZA dispersions: several months

NiO-YSZ dispersions: over 1 month

300 hr

Passed

Introduction	3D Hydrogen Electrode	Ni-substituted Perovskite	Conclusion
3D Printing	, Parameters		
Jetting Voltage Waveforms Image: State	veform	Parameters quency & p Spacing	Ink Property
Non-Jetting Waveform	All 2.560 a c b c b c b c b c b c b c b c b c b c	Piezoelectric transducer e	Ī

Example of Spacing and Resolution

3D Printing Examples

Ink Solid Loading

Ink Stability

Firing of 3D Hydrogen Electrode

2023 FECM/NETL Spring R&D Project Review Meeting

Introduction	3D Hydrogen Electrode

Near-term Plans

- Co-firing of TZA + NiO-YSZ / LSCFN-GDC / YSZ
- 3D Printing parameters optimization
- Refining firing process to avoid delamination and breakage
- Mechanical & electrochemical evaluation of 3D hydrogen electrode structure

Ni-Substituted Perovskite for Hydrogen Electrode Active Layer

LSCFN	
 La_{0.9-x}Sr_x Co_{0.2}Fe_{0.8-y}Ni_yO_{3-δ} (LSCFN) Exsolution of Ni in reducing environment 	Reducing Perovskite B-site Dopant
Principle of Exsolution	
• $A_{1-\alpha}BO_{3-\delta} \rightarrow A$ -site deficiency	c (i) (i) $($
Exsolution of B-site metals	$(La_{0,3}Sr_{0,7})(T_{10,94}M_{0,06})O_{3+\gamma}$ $M^{m+} = Ti^{4+}, Ni^{2+}$ ABO_{3} ABO_{3} ABO_{3} $O (+)$ $A_{0}B_{0}O_{3n+1}$ $O (+)$
$A_{1-\alpha}BO_{3-\delta} \xrightarrow{\text{Exsolution}} (1-\alpha)ABO_{3-\delta'} + \alpha B (1)$ $ABO_{3-\delta} \xrightarrow{\text{Exsolution}} (1-\alpha)ABO_{3-\delta''} + \alpha AO + \alpha B (2)$	Deficient $(La_{0,4}Sr_{0,4})(N_{0,4}T_{0,6})O_3$ $(La_{0,4}Sr_{0,4})(N_{0,4}T_{0,6})O_3$ $(La_{0,4}Sr_{0,4})(N_{0,4}T_{0,6})O_3$ $(La_{0,4}Sr_{0,4})(T_{1_{0,4}}M_{0,6})O_{3-\gamma}$ $(La_{0,4}Sr_{0,4})(T_{1_{0,4}}M_{0,6})O_{3-\gamma}$ $(La_{0,4}Sr_{0,4})(T_{1_{0,4}}M_{0,6})O_{3-\gamma}$ $M^{m+} = Mn^{2+3+}, Fe^{2+3+}, N ^{2+}, Cu^{2+}$ Deficient perovskites (vacancies) $A_{1-a}BO_{3-\gamma}$ C
	D. Neagu et al., Nat. chem., 5, (2013): 916-92.

Introduction

Conclusion

What is Ni-Exsolved Perovskite?

3D Hydrogen Electrode

Why Ni-Exsolved Perovskite?

Material Property

- Ni: Excellent catalytic activity, non-noble metal
- Stable in reducing environment
- Anchored structure to prevent agglomeration/migration \rightarrow exsolution
- Exsolved nanoparticle: increase catalyst surface area

Preceding Research

• Great solution for Ni agglomeration issues

e-Ni NPs improve anode

performance by

0.5 1.0 1.5 2.0 2.5

Current Density (A/cm²) T. Zhu et al., Joule, 2 (2018) 478-496

r density (W/cm²)

0.2

noting H. adsorption

750 °C - 30% wet H

Preliminary Study at UCSD

Introduction	3D Hydrogen Electro	de Ni-substituted Perovskite	Conclusion
How?			
• Fabricatio	on: Sol-gel metho	d 🗧 🏓 🏯 🔶 🚺 🔿	
Character	rization		
	XRD	Crystal Structure, Exsolved metal	crystals

Observation of exsolved nanoparticles

Pelletization & Van der Pauw method

EIS Nyquist plot, i-V curve

FESEM

Conductivity Test

Electrochemical

Characterization

Capable of Exsolution/Dissolution

Introduction	3D Hydrogen Electrode	Ni-substituted Perovskite	Conclusion
Characteriz	ation - FESEM		
	overlution of Ni particlas	.	

Characterization – Electronic Conductivity

• Van der Pauw method

• Measured in air environment at 600-800°C

- Consistent with conductivity of LSCF with
 - the same stoichiometry

Conclusion

• Electrochemical Test

Near-term Plans

- Symmetric cell test: LSCFN-GDC vs. LSCF-GDC vs. Ni-YSZ
- > Full SOEC test to determine iV curve and current density at 1.3V

• Exsolution Study

- Long-term Study: Stability and growth of exsolved particles
- Properties in Redox cycling

Highlights

3D Hydrogen Electrode

- Ink and printing parameters defined
- Ink developed with sufficient stability
- Demonstrated printing and firing of defined structure

- **Reversible exsolution** has been confirmed by XRD and FESEM
- Electronic Conductivity in air condition demonstrated
- Further detailed exsolution study planned

Acknowledgment

Project Manager: Sarah Michalik

Dr. Nguyen Q. Minh (PI)

Prof. Ping Liu

Haichen Lin

Dr. Sam Ghosh

Arkady Malakhov

Dr. Bruce Kahn (currently a professor at RIT)

Prof. Denis Cormier

Dr. Zhiheng Xu

Bobby Kovach

Thank You for Listening

2023 FECM/NETL Spring R&D Project Review Meeting