UW SCHOOL OF ENERGY RESOURCES

A Mid-Century Net-Zero
Scenario for the State of
Wyoming and its
Economic Impacts
(FE0032150)

2023 FECM/NETL SPRING R&D PROJECT REVIEW MEETING

Presented By: Eugene Holubnyak

April 19, 2023

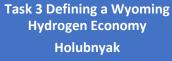
School of Energy Resources

SER's Mission:

Energy-driven economic development for Wyoming

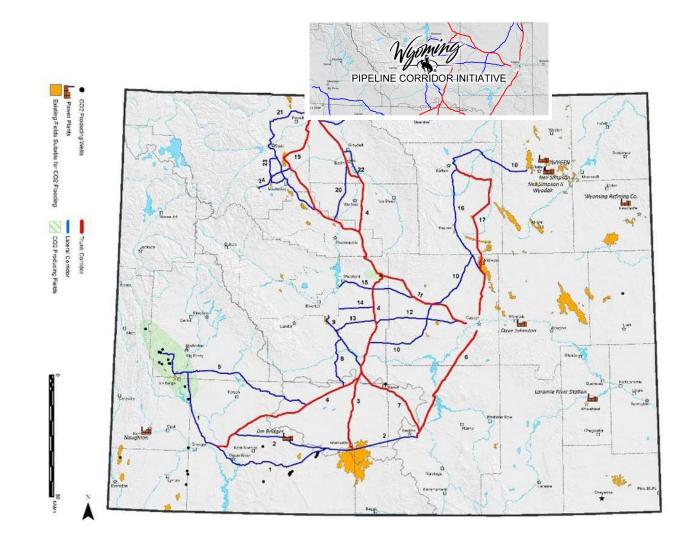
Team

Executive Director Krutka



Subtask 3.2 Feedstock & Energy Sources; Subtask 3.4 Transport Potential, Subtask 3.7 H2 Center of **Excellence at SER** Holubnyak

Coddington


Subtask 3.5 Water **Consumption & Resources** Nye

Subtask 3.3 Storage Potential McLaughlin

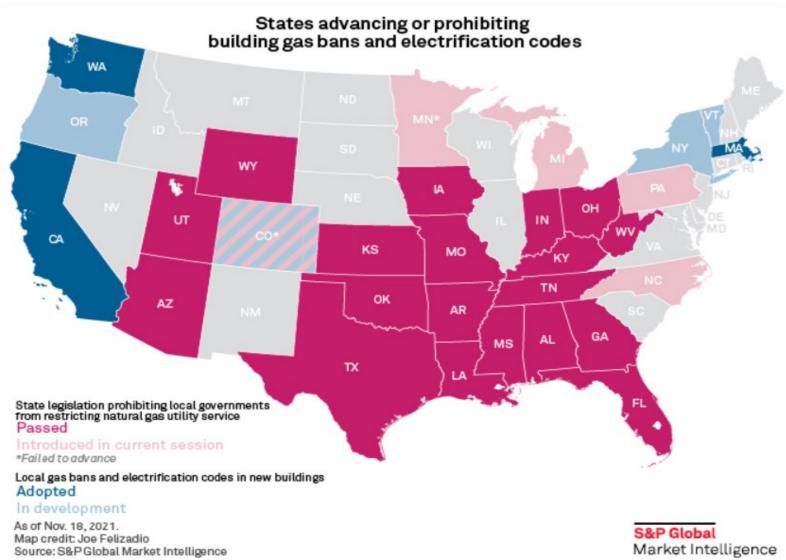
> Subtask 3.6 Stakeholder **Outreach & Educaiton** Reed

Outline

- Policy considerations
- Natural gas to Hydrogen
- Potential markets and economics
- Water
- Outreach

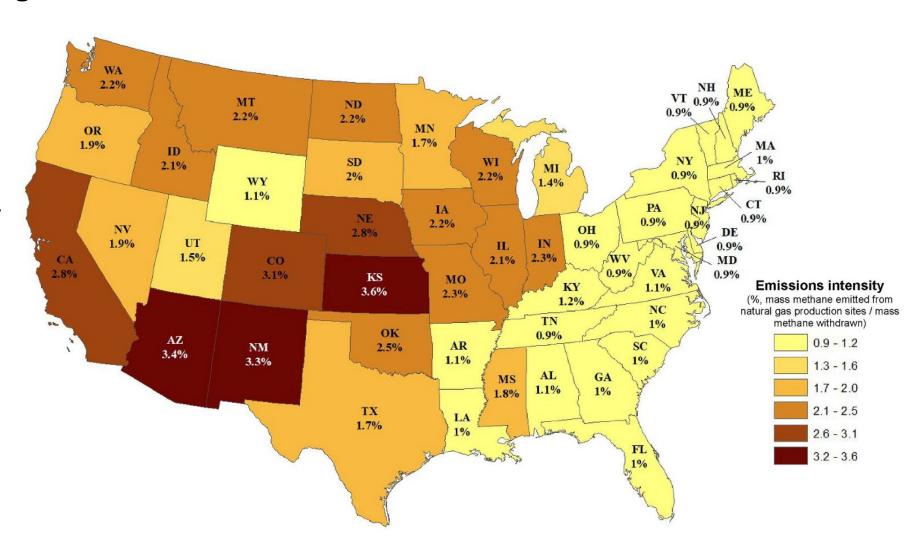
Wyoming's Energy Portfolio and the Need for Diversification

- Competitive Position of Wyoming Fossil Energy
 - Third largest energy producer in USA
 - Largest net energy exporter
 - #1 Coal Producer 218 million tons
 - #8 Crude Oil producer 232 thousand barrels per day
 - #9 Natural Gas Producer 1.3 trillion cubic feet
 - California, Nevada, Oregon, Washington
- Economic Impacts of Fossil Energy in Wyoming
 - Direct: 16,265 full & part-time jobs, \$7.9 billion in GDP
 - Total Impacts including direct, indirect (supply chain) & induced (household spending) roughly 32,000 jobs and \$10 billion in GDP
- Property & Severance Tax Revenues \$1.7 billion
- Federal Royalties \$860 million (Wyoming receives about half)



Renewable Portfolio Standards, Clean Energy Standards Greenhouse Gas Reduction

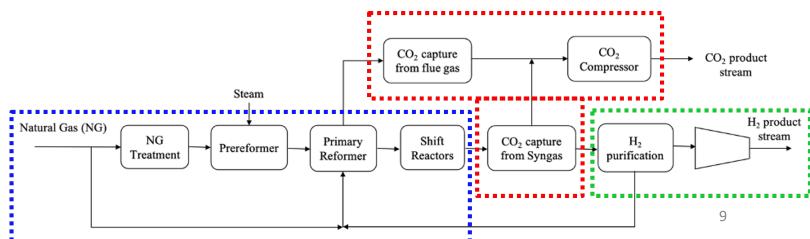
State	Renewable Portfolio Standards/ Clean Energy Standards	Greenhouse Gas Reduction			
California	RPS/CES: 50% by 2026 60% by 2030 100% by 2045 Blue H ₂ acceptable "so far" CCUS methodology for the LCFS	Carbon neutrality by 2045 AB32 scoping plan revision general negative as to natural gas			
Nevada	RPS: 50% by 2030 (with interim targets)	Zero or near-zero by 2050			
Oregon	RPS: 50% by 2040 (with interim targets)	100% below baseline by 2040			
Washington	RPS/CES: 100% by 2045 (with interim targets)	95% below baseline by 2050 Cap and invest program being implemented			


Other Policy Considerations

- Natural gas bans
- ESG
- Carbon Markets
 - Regulated
 - Voluntary
 - American Carbon Registry
 - Verra (expected early 2023)

Estimated Production-Stage Methane Emissions For Natural Gas Consumed In Each State

- Emission intensity is source dependent
- Markets dictate change and producers comply with new demands
- Public-private collaboration success story
 - The School of Energy Resources' Center for Air Quality



Blue Hydrogen Model Progress Summary

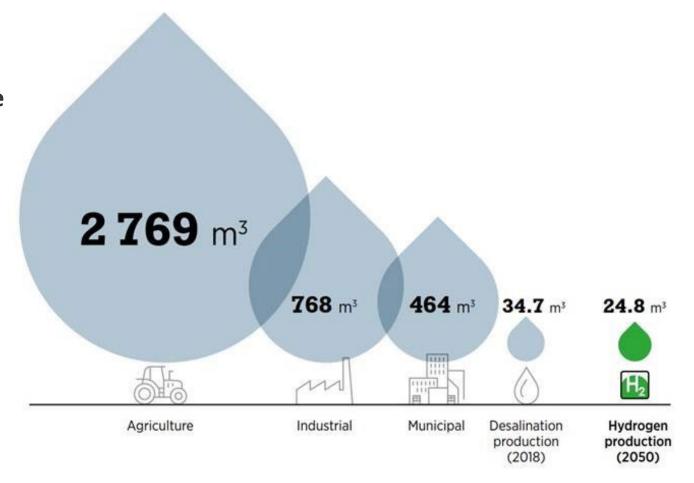
- The team has developed a preliminary process model of blue hydrogen produced from natural gas.
- This process model provides a detailed mass, energy, and performance description of the entire hydrogen production plant, which will be used to evaluate process water use and economics, as well as life cycle greenhouse gas emissions.
- The process yield of blue hydrogen is 0.264 kg H_2 / kg of natural gas used, which highly matches with that reported by a recent NETL study (2022).
- An engineering-economic model will be developed in conjunction with the process model to estimate the cost of blue hydrogen produced from natural gas in Wyoming.

Production stream form SMR section

Components	Inlet Feed (mole fraction)		Product stream from SMR		
	NG	Steam	Syngas (mole fraction)		
CO ₂	0.01	0.0	0.153		
CH ₄	0.931	0.0	0.042		
CO	0.0	0.0	0.003		
H ₂ O	0.0	1.0	0.197		
H ₂	H ₂ 0.0		0.602		

Current Externally Funded Projects

- Initial engineering of the CO₂ capture unit of TEP Blue Bison ATR Plant
- Technical analysis for a power-to-gas project via biomethanation technology at Jonah Energy site located in Wyoming
- Feasibility Study of Green Hydrogen Generation and Transport in SW Wyoming
- Nuclear microreactors program



Water Consumption by Hydrogen Production – World Outlook

- Hydrogen production is expected to scale 10x from current levels by 2050
- Hydrogen industry is forecasted to re-purpose water from existing industries:
 - Refineries and blue hydrogen
 - Natural gas
 - Coal and gasification
- Water use by Hydrogen production marginal compared to other industries, municipal, recreational, or agricultural activities

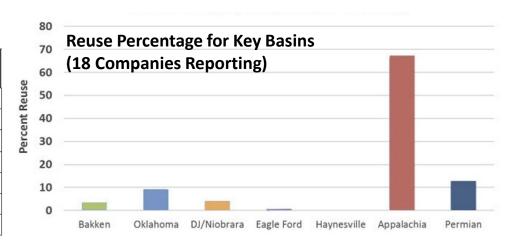
Water Consumption by Hydrogen Production – World Outlook

- Significant cooling load for electrolysers
 - 30 to 40 kg of water kgH₂o/kgH₂ for makeup in evaporative cooled systems.
 - The cooling demand for the electrolyser can typically increase by 40-70%
- Other cooling loads
 - The multi-stage compressors with intercooling to compress the produced hydrogen to a suitable pressure for storage or use
- Raw water feed for high purity electrolyser requirements
 - 20-40% of the water sent to waste
- Water disposal due to the feedwater impurities
 - Waste treatment facility or onsite treatment or disposal
- Additional 60-95 kgh₂o/kgh₂.
 - 60-70% for cooling water makeup

Hydrogen Production - Water Demand Accounting for Evaporative Cooling

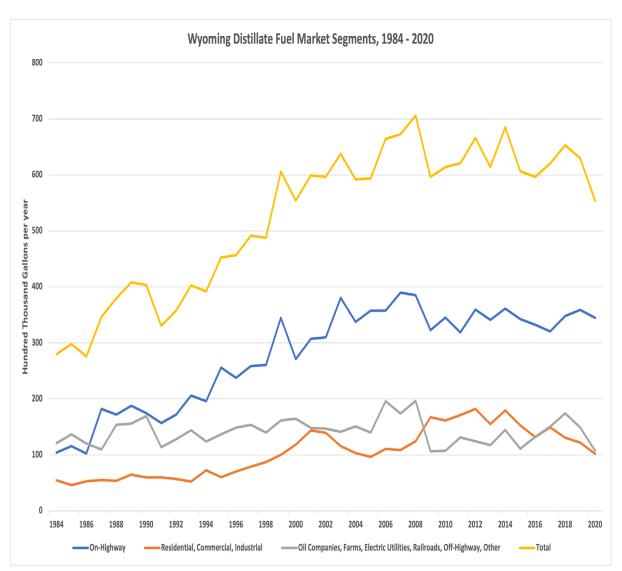
H ₂ production pathway	Stoichiometric demand (L/kg H ₂)	Total demand (L/kg H ₂), assuming good quality raw water import and evaporative cooling
Natural Gas reforming (grey H ₂)	4.5	*15-40
Natural Gas reforming with carbon capture (blue H ₂)	4.5	*18-44
Biogas reforming (can be classified as green H ₂)	4.5	*20-45
Coal gasification (black H ₂)	C:H ratio and coal moisture content	70
Biomass gasification (can be classified as green H ₂)	C:H ratio and biomass moisture content	60
Water electrolysis (green H ₂)	9	60-95

Permian Basin: Produced Water Reuse and Marketplace


- Challenge and opportunity
- Optimize hydrogen production methods with desalination/water treatment
- Water demand: 1.3B bbls/annum
- Produced water: 1.6B bbls/annum
- Asking prices \$0.48-1.02/barrel

State	Data Points	County	Price High	Price Low	Price Average	Price Median	Today's Volume Median
TX	36	Reeves	\$2.00	\$0.30	\$0.58	\$0.57	50,000
TX	33	Yoakum	\$1.00	\$0.45	\$0.77	\$1.00	20,572
TX	33	Martin	\$1.40	\$0.35	\$1.06	\$0.50	8,572
TX	31	Midland	\$3.00	\$0.10	\$0.52	\$0.50	6,857
TX	14	Howard	\$0.65	\$0.30	\$0.48	\$0.48	30,000
NM	60	Lea	\$1.00	\$0.50	\$0.80	\$1.00	17,142
NM	21	Eddy	\$1.25	\$1.00	\$1.02	\$1.00	27,428

www.genesiswatertech.com



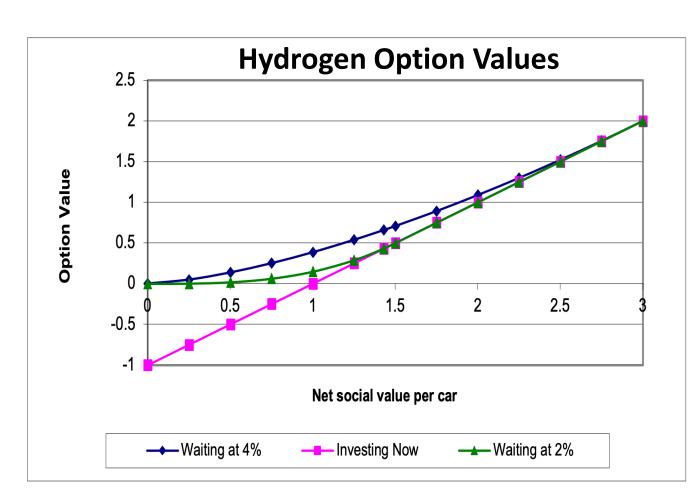
Sourcewater https://www.sourcewater.com/

GWPC: Produced Water Report: Regulations, Current Practices, and Research Needs, 2019

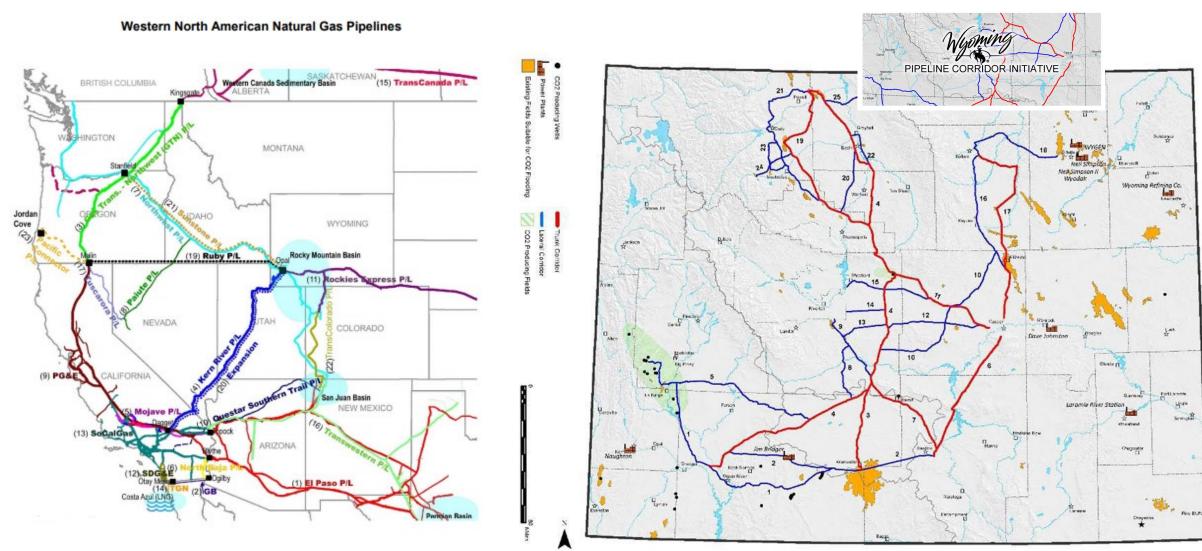
Rocky Mountain Market for Hydrogen in Transport?

- If we produce H₂ who will buy it?
- What is the <u>potential</u> size of H₂ market?
- Consider Wyoming distillate use: 600k gallons / year
- Replacing Wyoming diesel use w/ H₂ would require
 - 3 coal to H₂ plants (660,000 Kg / day), or
 - 4 CH₄ to H₂ facilities (483,000 Kg / day)
- Replacing WY, CO, ID, MT, & UT distillate use:
 - 16 coal to H₂ plants using 29 MST of coal, or
 - 19 CH₄ to H₂ plants using 532 million Mcf of CH₄
- Will estimate impacts on jobs, economic output, and tax revenues for proposed and potential Wyoming projects

Rocky Mountain Market for Hydrogen in Power?

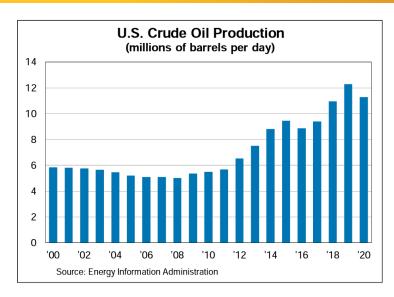

- 2.5 GW of Wyoming coal capacity closing by 2037
- Replacing this capacity with hydrogen would allow
 - 4 coal to H₂ plants, or
 - 5 CH₄ to H₂ facilities
- Replacing WY, CO, ID, MT, & UT coal use:
 - 8 coal to H₂ plants, or
 - 10 CH₄ to H₂ plants consuming 532 million Mcf
- Power storage is another market opportunity
- Analysis of ammonia market is next with
 - Estimation of world ammonia market model that
 - Could be a useful tool for determining how prices for NH₃ are affected by
 - New capacity (gray, blue, green), and
 - More expensive natural gas

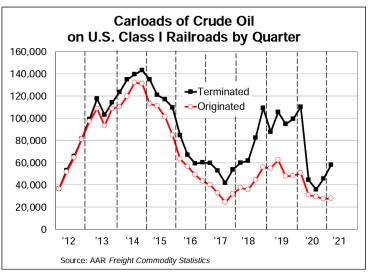
Planned Power Plant Closures in Wyoming

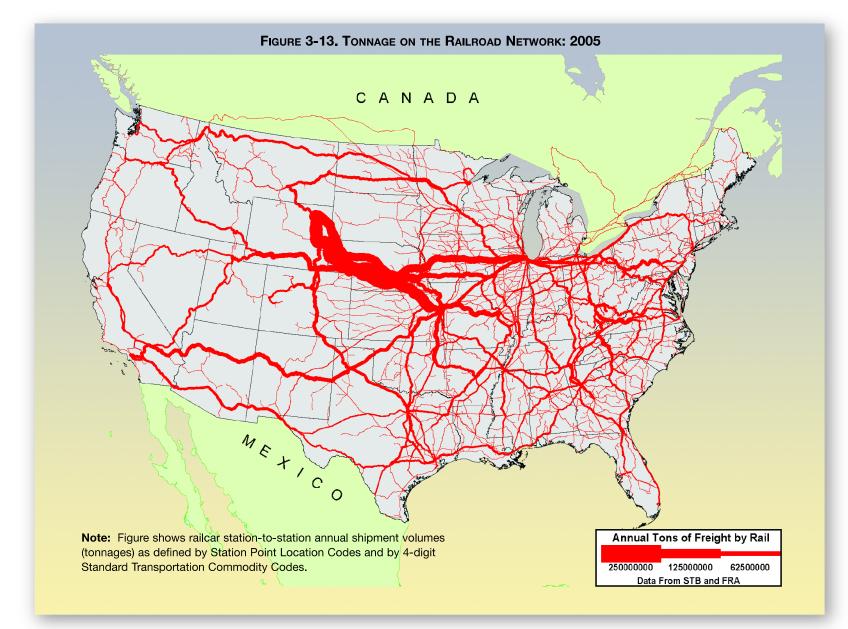

Plant Name	Capacity (MW)	Closure Date
Dave Johnston 1	99	2028
Dave Johnston 2	106	2028
Dave Johnston 3	220	2028
Dave Johnston 4	330	2028
Naughton 1	156	2025
Naughton 2	201	2025
Jim Bridger 1	351	2023
Jim Bridger 2	356	2028
Jim Bridger 3	349	2037
Jim Bridger 4	353	2037
Total	2,521	

Hydrogen Investment under Uncertainty

- Many uncertainties surround hydrogen investments
 - Costs, performance
 - Market access / demand
 - Tax policy
- Facing these uncertainties investors often wait for a much higher rate of return
- Option valuation can help identify the optimal time to wait
- Example: If a net social value of H₂ of 1.3 appreciates at 4%,
 - A \$500 value from waiting &
 - Optimal time to invest is over 20 years
- At 2% appreciation (lower return from waiting)
 - A \$290 value from waiting &
 - Optimal time to invest is 5 years




Regional CO₂ Pipelines


AAR-Crude-Oil-Fact-Sheet

- 2008, railroads originated 9,500 carloads of crude oil
- 2014, shale revolution, peaked at **493,146** carloads, **52X**
- 2021, U.S. Class I railroads terminated **236,069** carloads of crude oil
 - A variety of factors affect rail crude oil volumes, including pipeline capacity and crude oil prices.
- More than 99.99% of all hazmat moved by rail reaches its destination without a release caused by a train accident.

Rail freight tonnage

https://ops.fhwa.dot.gov/freight/freight_an alysis/nat_freight_stats/docs/07factsfigures /pdf/fig3_13.pdf

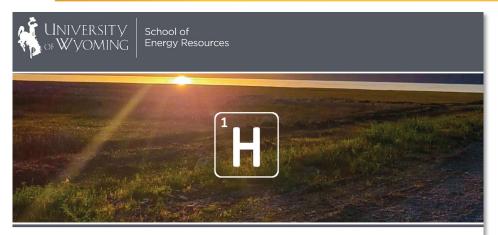
List of Stakeholders

- Wyoming Energy Authority
- Regulators
- Industry
- **National Labs**
- Academia
- Tribes

Sınclaır

Colorado State University

Tribal Outreach


- Tribal leadership from the Wind River Reservation October 12, 2022
- SER hosted a presentation to learn about Tribal Governance.
- Wahleah Johns, Director of the U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs, was invited to speak at SER's annual law and policy conference on October 14, 2022
- Discussion with the Greater Yellowstone Coalition, representatives from the local K-12 schools on the Wind River Reservation, SER and other research units at UW on December 14, 2022
- A meeting is scheduled for January 24 with Tribal leadership to discuss the implementation of a course on tribal governance and energy development.

Request for Proposals Hydrogen: Make, Move, Use or Store

- Total budget \$650,000 for 7 projects
- Seed money to develop sustainable program
- Progress on the research infrastructure
- Helps to facilitate proposals for external funding
- Projects update meeting with industry during National Labs Day on campus of UW
 - Hiring is complete
 - Laboratories are being equipped and experiments are in progress
 - Results are being analyzed
 - New areas of interest are being identified
- Round 2 is expected June 15, 2023

REQUEST FOR PROPOSALS

HYDROGEN: MAKE, MOVE, USE OR STORE

ISSUED BY THE UW SCHOOL OF ENERGY RESOURCES HYDROGEN ENERGY RESEARCH CENTER

Proposals are due July 15, 2022 Selected projects will be notified by August 1, 2022

F	Research on Campus				
L	Hydrogen: Make, Move, Use or Store		21	21	106
	iyulugelli iviake, iviuve, use ul stule		20	16	95
			21	21	109
1.	Soheil Saraji – A Multiscale Study of Hydrogen Geochemical Reactivity and Transport for C	1-6	18	17	86
	Storage in Deep Saline Aquifers – Petroleum Engineering		23	20	107
2	Charlie 7hana Calana Carres Musley Kuinkal Faanamia anaksia of building yayu minalina	15	17	18	87
۷.	Charlie Zhang, Selena Gerace, Muskan Kuinkel – Economic analysis of building new pipelines	VS	20	18	96
	converting existing natural gas pipelines in gaseous hydrogen transportation — Civil and Architectural Engineering		20	21	88
	Architectural Engineering		17	17	85
3.	Saman Aryana - Phase Behavior of Hydrogen and Blended Gas — Chemical Engineering		17	18	85
	25 22		25	23	119
4.	Kam Ng - Experimental Investigation of the Effect of Underground Hydrogen Storage on the		18	16	88
	Hydraulic and Mechanical Properties of Rock Reservoirs – Civil and Architectural Engineering		19	20	100
_	Canala Devalula del Milabara I Charliffrance Langeth en Nicoralita e Charle de d'Mila d'Engage fon Unidos	20	19	21	106
5.	Sarah Buckhold, Michael Stoellinger, Jonathan Naughton – Stranded Wind Energy for Hydrogo	en	20	18	91
	Production in the State of Wyoming – Mechanical Engineering		21	19	99
6.	Haibo Zhai – Technological Learning and Resources Required for Large-Scale Blue Hydrogen		17	18	95
	Production toward Energy Earthshot Target – Civil and Architectural Engineering		18	18	91
	20 20		18	20	97
	, , , , , , , , , , , , , , , , , , , ,	3	21	20	98
	for Hydrogen Storage in Wyoming – Petroleum Engineering		23	20	101

UW SCHOOL OF ENERGY RESOURCES

HYDROGEN ENERGY RESEARCH CENTER

Presented By: Eugene Holubnyak

<u>eholubny@uwyo.edu</u>

