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Outline
 Short introduction

 Why use quantum information science for sensors?

 Predictive quantum simulations for candidate materials

 Novel symmetry-based quantum optimal control framework 

 Summary

2



UC Riverside (UCR)
 Official Hispanic Serving Institution

 Demographics:

 57% first-generation students                                                                         
to attend college

 Designated as “top-performing                                                          
institution for African American &                                                         
Latino/a students” by The Education                                                        
Trust – 1 of only 3 institutions in the nation
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General Project Objectives
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NV-Center Sensors
 Nitrogen-vacancy (NV) centers: structural point defects in bulk carbon

 Contain stable, localized electron spin that can be used as sensor

 Coherence signals can persist at 700 – 1000 K                                       
(essential for harsh fossil energy environments)

 Can be controlled with electromagnetic pulses
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NV-Center Sensors (cont.)
 NV centers near the surface have not been thoroughly explored

 Defects at surface can enable sensitive detection of chemical analytes in 
fossil energy infrastructures (discussed later)
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Excited-State QM for Dynamics
 (1) NV-center configurations down-selected with DFT

 (2) Excited-state QM will probe real-time interactions between NV 
centers & EM fields to understand sensor mechanisms

 Electromagnetic radiation (i.e., light) has two components

 Magnetic pulse (B)

 Electric pulse (E)
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Optimal Control Fields
 Excited-state QM is an initial value problem

 Can we ask the inverse question: “Can we construct pulses that enable 
desired behavior in NV center?”
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Quantum Optimal Control
 Quantum optimal control (QOC) solves for optimized controlling 

pulses to evolve quantum system to target state

 Gate operation in quantum computing

 Challenge: size of Hamiltonian 2𝑛 increases exponentially by number of 
qubits 𝑛

 Solution: accelerate QOC by transforming Hamiltonian using 
symmetry
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Gradient-Based Program
 Calculates fields that enables transition to desired final state ห ൿ𝜓𝑓

 Uses scheme from GRAdient Pulse Engineering (GRAPE) algorithm
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Dynamics of System
 Schrödinger equation

𝑖
𝜕

𝜕𝑡
| ۧ𝜓 𝑡 = (𝐻0 +𝐻𝑐(𝑡))| ۧ𝜓 𝑡

 Propagator

| ۧ𝜓 𝑇 = exp −𝑖 න
0

𝑇

𝐻0 +𝐻𝑐 𝑡 d𝑡 | ۧ𝜓 0

 Discretized propagator at the 𝑗th time step

| ൿ𝜓𝑗+1 = exp −𝑖𝜏 𝐻0 +𝐻𝑐[(𝑗 +
1

2
)𝜏] | ൿ𝜓𝑗
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Dynamics of System
 Loss function in gradient-based method

𝑃(| ۧ𝜓𝑁 ) = 𝜓𝑓 𝜓𝑁
2
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𝜎𝑧 =
1 0
0 −1

𝜎𝑥 =
0 1
1 0

𝜎𝑦 =
0 −𝑖
𝑖 0

Pauli matrices:



Symmetry of System
 Static Hamiltonian
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𝑆𝑛 symmetry

𝑆𝑛 symmetry

𝑆𝑛 symmetry

𝐷𝑛 symmetry

𝑆𝑛 permutation group

𝐷𝑛 dihedral group



Symmetry of System

 (a) Configuration of qubits is not 
affected by any permutation of 
indices (𝑆6 action)
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(a)

(b)

 (b) Nearest-neighbor coupling is 
generally affected by permutation 
(𝑆6 action), but not affected by 
rotation/reflection (𝐷6 action)



Symmetry-Based Hamiltonian 

Transformation
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Comparison of Conventional 

and Symmetry-Based Method 
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Non-coupled Nearest-neighbor coupling

Runtime vs.
# of qubits 𝑛

Optimized
Controls



Symmetry-Protected Subspaces
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 Symmetry-protected Subspaces: symmetry of system guarantees that 
transition is restricted within each subspace

 Only one resonance frequency in first subspace under 𝑆𝑛 symmetry (no 
coupling)



Symmetry-Protected Subspaces
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 Three resonance frequencies in first subspace under 𝐷𝑛 symmetry with 
nearest-neighbor coupling

 To enable more control in first subspace: introduce coupling between 
further qubits (preserves 𝐷𝑛 symmetry)
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Symmetry-Protected Subspaces
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Lie-Trotter-Suzuki Decomposition
 Hamiltonian, symmetry is broken
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Lie-Trotter-Suzuki Decomposition
 Time dependent terms reduce to 𝑛 of 2×2 matrices from a 2𝑛×2𝑛 matrix
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Summary of QOC
 Transformed Hamiltonian based on symmetry

 Same output, but much faster

 More controllability by introducing further coupling

 Can be generalized to more systems with Lie-Trotter-Suzuki 
decomposition
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Conclusion & Acknowledgements
 Predictive quantum simulations provide rational guidance for 

constructing quantum sensors for fossil energy infrastructures

 Quantum information science almost perfect application of excited-state 
quantum calculations

 Group website: http://bmwong-group.com

 E-mail: bryan.wong@ucr.edu

 Funded by U.S. Department of Energy, National Energy Technology 
Laboratory (Award Number DE-FE0031896)
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Thank you!


