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Overview
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• Project Title: A Highly Efficient and Affordable Hybrid System for Hydrogen and Electricity Production

• Award No.:  DE-FE0031975

• Project Timeline: 09/27/2020 – 02/26/2024

• DOE/NETL Program Manager: Andrew O'Connell

Heli Wang (PI)

David Ingram

Byunghyun Min

Amin Baghalian

Jordan Daniels

Junsung Hong                                                    

Sarah Bushyhead

Keri Collins

Rob Kelly

• Powder synthesis

• Large cell manufacturing

• Stack fabrication and testing

• System design, integration 

and operation

Meilin Liu (Co-PI)

Zhijun Liu

Jerry Luo

Chanho Kim

Xueyu Hu

Nikhil Govindarajan 

Gyutae Nam

• Cell materials development

• Catalyst development

• Button cell evaluation & 

advanced characterization

• Combined theory & 

experimental validation



Phillips 66 and R&D
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Overview

• Diversified manufacturing and logistics 

company

• Portfolio includes Midstream, Chemicals, 

Refining, and Marketing & Specialties 

businesses

• Process, transport, store, and market fuels 

and products globally

• #29 on the Fortune 500 list 

• Long history in R&D at ERI

• Emerging energy: solid oxides, hydrogen, 

decarbonization, renewables etc



Fabrication and Testing Facilities
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High Power Laser CutterTape Caster Spray Coater

System Testing EnclosureHigh Temp Furnace

• Cost-effective fabrication 
methods

• Full spectrum of  cell/stack 
manufacturing and testing 
facilities

• >10,000 sq. ft. floor space

• Fuel (H2, CH4, pipeline NG), 

processing and treatment, 

DI/steam generation and 

control

• Large load banks and power 

supplies.

• Fully automated control 

systems and stack test 

stations

• System instrumentation, 

control and communication



Project Progress
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Date Milestone (BP2) % Complete

09/2022 Complete the stack design and components development 100%

05/2023 Complete the fabrication and evaluation of up to 3 short stacks (< 0.25 kW). 60%

09/2023 Complete 1 kW stack testing with ≥55% fuel cell at 0.5 A cm-2, and >90% electrolysis at 

≤ 650 °C, <2% per 1000 h degradation.

20%

09/2023 Complete the system design and integration, complete a thermodynamic analysis. 20%

12/2023 Complete evaluation of the 250 W system with ≥50% fuel cell efficiency at 0.5 A cm-2, 

and >85% electrical efficiency at ≤ 650 °C.

Not started

02/2024 Demonstrate the potential to produce hydrogen at a cost of $2 per kilogram based on a 

cost of electricity of $30 per MWhr.

Not started

02/2024 Complete the establishment of a thermodynamic model to analyze the energy balance 

and global efficiency of the system.

Not started

02/2024 Evaluate 1.0 kW rSOC system performance at the relevant operating conditions and 

model: efficiency, durability, degradation, life of electrolysis cell.

Not started

02/2024 Complete a techno-economic analysis (TEA) based on test data on the rSOC system or 

components for the defined application

Not started



Accomplishments to Date
✓ Air electrode: 

• Based on high-throughput calculation and experimental validation, PBCX air electrode shows low 

polarization resistance in air (3% H2O). In BZCYYb symmetrical cell, PBCX air electrode demonstrated 

excellent stability in air with 3% and 30% steam (over 500h).

✓ Air electrode with catalyst: 

• Complete the PrBa0.8Ca0.2Co2O6-δ air electrode with CeO2 based catalyst development with a 

polarization resistance of <0.15 Ω cm2 at 600 ºC in Air (3% H2O). 

• The A0.4Ce0.6O2-δ catalyst shows a degradation rate of <2% per 1000 h at 600 ºC under the presence 

of 3%H2O and Cr contaminants for over 500 h.

✓ Large cell fabrication and stacking: 

• Developed strategies to tackle the flatness of 10 cm x 10 cm cells. 

• With significant modifications (processes, starting powders, sinter profiles etc), we successfully 

fabricated 10 cm cells with flatness in the range of ≤ 500 µm.

• Using 10 cm YSZ cells, we evaluated follow-up air electrode fabrication and sealing for reduced 

flatness of cells/stacks, and developed optimal procedure for air electrode processing and sealing. 

✓ 1 kW Test station: Test station installed, with 3-segments heating/cooling. Successful dry runs.
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Air Electrode Development: High-throughput calculations

9

Pr8Ba8M16-xM’xO48
M = Co

M’ = 31 different elements

x = 1, 2, 3, 4, 5, 6, 7, 8

✓ Oxygen p-band center value represents the charge transfer activity, which is generally 
regarded as the rate-determining step of oxygen reduction reaction (ORR)

✓ Warmer color with less negative p-band center should have good performance with ORR

Oxygen p-band center value 



Air Electrode Development: Validation
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PrBaCo1.9X0.1O5+δ /BZCYYb1711/PrBaCo1.9X0.1O5+δ symmetrical cells

✓ A low polarization resistance of 0.22 Ω cm2 is achieved at 600°C
✓ PrBaCo1.9X0.1O5+δ/BZCYYb/ PrBaCo1.9X0.1O5+δ symmetrical cell also showed good 

stability under air with 3% and 30% H2O at 600 °C

600°C

Rp of PBCX Air Electrode Based on BZCYYb1711



Development of CeO2 Based Catalyst 
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✓ CeO2 based catalyst was screened for PrBa0.8Ca0.2Co2O5+δ (PBCC) air electrode 

by the solution infiltration process 

Catalyst Rp (Ω cm2)

Bare PBCC 0.158

A0.2Ce0.8O2-δ 0.102

B0.2Ce0.8O2-δ 0.295

C0.2Ce0.8O2-δ 0.252

D0.2Ce0.8O2-δ 0.522

E0.2Ce0.8O2-δ 0.324

F0.2Ce0.8O2-δ 0.360

 Enhancing the performance of PrBa0.8Ca0.2Co2O6-δ (PBCC) air electrode to achieve 

polarization resistance < 0.15 Ω cm2 at 600 °C
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Development of CeO2 Based Catalyst 
Enhancing PrBa0.8Ca0.2Co2O6-δ (PBCC) and stability of PBCC w/ catalysts
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A Content Rp (Ωcm2) % degradation

10% 0.0749 51%

20% 0.10276 12.5%

30% 0.08683 33%

40% 0.11116 4.3%

50% 0.12194 5.3%

✓ Enhancing performance of PBCC air electrode 

to achieve polarization resistance <0.15 Ω cm2

at 600°C and 3% steam

✓ AxCe1-xO2-δ catalysts demonstrated the 

required performance enhancement

✓ CeO2 doped 40 and 50 % A catalysts showed 

lower degradation in Crofer-22 at 600 °C

A content in AxCe1-xO2-δ catalysts



Development of CeO2 Based Catalyst
Long-term stability of A0.4Ce0.6O2-δ and A0.5Ce0.5O2-δ catalysts
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✓ PBCC with A0.4Ce0.6O2-δ catalyst catalyst showed excellent stability without degradation for 

500h in 3% steam + P66 coated Cr at 600 °C



Large Cells: Tackle the cell flatness for stacking
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Strategies to reduce the residual stress:
✓ Shape and size of the green tape
✓ Optimize sintering temperature, ramping rate, and time
✓ Fine tune the microstructure (Starting powder particle size, 

fuel electrode porosity, and pore size)
✓ Mechanical flattening
✓ Combination

▪ Sealing/framing
▪ Air electrode fabrication then sealing

Tape casting

BHCYYb/functional 
layer/Ni-BHCYYb

Drying and 
flattening

Cutting

15x15 cm2 (6x6 
in2)

Burnout

(staged 
temperatures)

Sintering

(HT treatment)

Flattening

(HT processing)

Half cell > 10x10 
cm2

Laser-cut into 
desired size

Interlayer spray 
coating and 

sintering

Screen printing 
of air electrode

Air electrode Sealing Stacking

Flatness
Starting 

powders



Tackle the Cell Flatness: Effect of sintering profile
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Warping of the cell can be minimized to some 

degree by optimizing sintering profile

Sintering condition#1 Sintering condition#2 Sintering condition#3

Sintering condition#3

Sintering condition#2

Flatness ≤ 200 µm



Tackle the Cell Flatness: NiO powder, combination
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A. Study on the effect of NiO powder types

(a)

(b)

(c)

(a) (d)

≤ 200 µm flatness 

(met target flatness)

Flatness > 1 mm

(d)

✓ (a) → (b) : optimized NiO powder types restrained the warpage

✓ (b) → (c) : optimized sintering profile

✓ (c) → (d) : mechanical flattening w/o defects

➢ Same approach is for fabricating 10 x 10 cm2 cell

✓ Shrinkage rate of the support 

layer can be significantly reduced 

by adjusting NiO starting powder 

types

✓ Less shrinkage is preferred 

B. Tape casting & sintering & mechanical flattening



Tackle the Cell Flatness: Larger cells
Then Now
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Example of cell cracks during fabrication

✓ 2022: Reasonable good flatness

✓ Low yield due to cells cracking associated

10 cm (final cell size)

Q4 2022

Q1 2023Q4 2022

✓ Q4 2022: Reduced cracking, but more cell 

bending compared to Q1 2022

✓ Q1 2023: Significantly improvement. The 

flatness is acceptable for bigger cell, and was 

controlled in the ≤ 500 µm range. 



Tackle the Cell Flatness: Flat cells fabrication
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✓ Good cells fabricated, with acceptable flatness and dense structure.

✓ QC of cell fabrication is underway including (cell-to-cell) variations in thickness, flatness, 

cracks etc. Working on improving yield. 

11 cm

After interlayer

Before interlayer



Tackle the Cell Flatness for Stacking: Sealing (YSZ cells)

19Title of Presentation
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➢ Sealing could reduce YSZ cells Flatness (f) from 1000 - 1500 µm → 300 - 500 µm, cracking an issue

f = ~500 µm 

f = ~1000 µm 

f = ~500 µm 

f = ~1500 µm f = ~1500 µm 
f = ~1100 µm 

f = ~500 µm 
f = ~300 µm 

Sealing

on frames

Crack Crack formation 

during next step

Crack

Crack
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➢ No change in the flatness (f) by air-electrode fabrication at 950 oC: ~500 µm → ~500 µm

➢ The cells were further flattened from ~500 µm to ~100 µm without any fracturing.
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Stack Test Station

Control panel
Gas panel

E-load

Power supply

Furnace

✓ 3-segments heating/cooling

✓ Programable profiles vis PC 

control

✓ Successful dry-runs

✓ Location for long-term 

stack/system operations



Summary

22

❑ Based on high-throughput calculation and experimental validation, we 

developed low resistance and highly stable PBCX air electrode. (500 h 

operation in 3% H2O & additional 500 h in 30% H2O at 600 °C)

❑ Developed highly active and stable A0.4Ce0.6O2-δ catalyst-coated PBCC air 

electrode (0.12 Ω cm2 at  600 °C, degradation rate of <1% per 1,000 h in 

3% H2O and Cr)

❑With modifications in processes, starting materials, sintering profiles etc, we 

successfully fabricated 10 cm x 10 cm cells with acceptable flatness range 

(≤ 500 µm)

❑ Developed follow-up optimal procedures for air electrode processing and 

sealing, with YSZ cells.

❑ Installed 1kW stack test station, with successful dry runs.



Work in Progressing
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Date Milestone (BP2) % Complete

09/2022 Complete the stack design and components development 100%

05/2023 Complete the fabrication and evaluation of up to 3 short stacks (< 0.25 kW). 60%

09/2023 Complete 1 kW stack testing with ≥55% fuel cell at 0.5 A cm-2, and >90% electrolysis at 

≤ 650 °C, <2% per 1000 h degradation.

20%

09/2023 Complete the system design and integration, complete a thermodynamic analysis. 20%

12/2023 Complete evaluation of the 250 W system with ≥50% fuel cell efficiency at 0.5 A cm-2, 

and >85% electrical efficiency at ≤ 650 °C.

Not started

02/2024 Demonstrate the potential to produce hydrogen at a cost of $2 per kilogram based on a 

cost of electricity of $30 per MWhr.

Not started

02/2024 Complete the establishment of a thermodynamic model to analyze the energy balance 

and global efficiency of the system.

Not started

02/2024 Evaluate 1.0 kW rSOC system performance at the relevant operating conditions and 

model: efficiency, durability, degradation, life of electrolysis cell.

Not started

02/2024 Complete a techno-economic analysis (TEA) based on test data on the rSOC system or 

components for the defined application

Not started
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Project Objectives (re-cap)
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• To design, fabricate, and demonstrate a robust, highly efficient,

and affordable reversible solid oxide cell (rSOC) system based

on a proton conducting electrolyte membrane for hydrogen and

power generation.

• The 1-kW prototype system will meet the following technical

specifications:

• Operate the system in a real-world environment.

• ≥50% electrical efficiency (LHV of H2) at 0.5 A cm-2 in fuel

cell mode on H2 at 650 °C.

• >85% electrical efficiency (LHV of H2) in electrolysis mode

at ≤ 650 °C.

• Demonstrate the potential to < $2/kg hydrogen.



Electrolyte Development (re-cap)
Stability Long term testing 
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✓ Y- and Yb-doped electrolytes show desirable 

conductivity of ~0.02 S cm-1 at 600 ºC, making 

them good candidates for ReSOCs

✓ BHCYb172 showed high chemical stability against 

CO2 and H2O

✓ BHCYb172 demonstrates excellent chemical 

compatibility with NiO (not shown)

✓ The 1100-h EC mode operation of Ni-

BHCYYb/BHCYYb/PB9CN cells show high 

durability, degradation rate <1.4%ΔV/1kh, 

achieving the target (<2% per 500 h).

✓ 84% efficiency in EC mode and 68% in FC mode, 

with roundtrip efficiency of 76%
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Energy Environ. Sci., 15 (2022) 2992-3003.



✓ At 600 °C, FC mode: PPD=1.21 W cm-2; 

EC mode: 1.3 V, current density= 2.0 A 

cm-2

✓ A low degradation rate of  0.8% /1000 h

✓ Roundtrip electric efficiencies of  84% 

and 79% at 650 and 600 °C, respectively

28

High-Performance BHCYb172-based Cell and H2O Electrolysis (re-cap)

Energy Environ. Sci., 15 (2022) 2992-3003.



Air electrode development: high-throughput calculations
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o Oxygen vacancy formation energy (Ev) represents the ability of materials in generating 
oxygen vacancies, which is the active sites for ORR

o Proton formation energy (Ep) represents the ability of materials in generating protons, 
which provide the protonic conductivity

o The performance of X-doped PrBaCo2O5+δ are predicted to be promising in PCFCs

Oxygen vacancy formation energy Proton formation energy 

Backup page



Air Electrode Development: Validation
PrBaCo1.9X0.1O5+δ /SDC/PrBaCo1.9X0.1O5+δ symmetrical cells Stability of PBCX air electrode
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➢ A low polarization resistance of 0.077 Ω cm2 is 
achieved at 600 °C.

➢ The rate determining process for PrBaCo1.9X0.1O5+δ

is charge transfer (𝑹𝒑 ∝ 𝒑𝑶𝟐
−𝟎.𝟑𝟕𝟓). 

➢ PrBaCo1.9X0.1O5+δ/SDC/ 
PrBaCo1.9X0.1O5+δ symmetrical cell 
shows outstanding stability under air 
with 3% and 30% H2O at 600 °C

Backup page



Catalyst Development (re-cap)

31
• Catalyst was developed for PrBa0.8Ca0.2Co2O5+δ (PBCC) air electrode by the solution 

infiltration process 


