2023 FECM/NETL SPRING R&D PROJECT REVIEW MEETING – 4/18/2023

An Autonomous Robotic Inspection System for Coal Ash and Tailings Storage Facilities (FE0032177)

University Training and Research for Fossil Energy and Carbon Management – UCR

PI: Guilherme A. S. Pereira (Mechanical and Aerospace Engineering) Co-PI: Ihsan "Berk" Tulu (Mining Engineering)

West Virginia University

Benjamin M. Statler College of Engineering and Mineral Resources

Team

- Guilherme A. S. Pereira Pl
 - Department of Mechanical and Aerospace Engineering – WVU
 - Specialist in Robotics
- Ihsan "Berk" Tulu Co-PI
 - Department of Mining Engineering WVU
 - Specialist in Geomechanics/Mine Safety and Health
- Paulo Galvão Simplício PhD student
 - Mechanical Engineering
- Mustafa Can Suner PhD student
 - Mining Engineering

Coal Ash and Tailing Dams

- Tailings dams, impoundments, slurry ponds, or ash ponds are facilities that store waste by-products from coal mine and coal-fired power plants.
- The US has more than 700 coal ash ponds.
- In WV only, at least 52 impoundments¹ are classified as high hazard level
 - failure may result in loss of life, significant economic losses, and/or environmental damage.
- Ash ponds contain contaminants like mercury, cadmium, and arsenic.

VirginiaUniversity.

Map of dams in Northern and Central Appalachia

Source: US Army Corps of Engineers, National Inventory of Dams, Geographic Information System (GIS). <u>https://nid.usace.army.mil/</u>

Impound Construction

 Impounds are often embankment dam structures incrementally raised with the same waste they store.

MSHA Handbook Series, Dam Inspection and Plan Review Handbook, Number PH21-V-6, January 2021

WestVirginiaUniversity.

Lumbroso, D., Collell, M.R., Petkovsek, G. *et al.* DAMSAT: An Eye in the Sky for Monitoring Tailings Dams. *Mine Water Environ* **40**, 113–127 (2021).

Impound Liquefaction (Failure)

Pacheco, R. L. R. (2019). Static liquefaction in tailings dam and flow failure. *Madrid, SP*.

Impound Liquefaction

- Iron mining tailing dam, Brumadinho, Brazil, Jan. 2019
- 11.7 million m³ of tailings were released
- 363 people died or are missing

WestVirginiaUniversity.

https://www.youtube.com/watch?v=NK6EDKOys5E

Closer accidents

Jan. 2014 - About 74,000 tons of coal ash and 27 million gallons of contaminated water flown through drainage pipe into Dan River.

https://www.nytimes.com/2014/03/01/us/coal-ash-spill reveals-transformation-of-north-carolina-agency.html

Closer accidents

Dec. 2008 – A retention wall failed. The wave of coal ash and mud toppled power lines, covered roads and ruptured a gas line. It damaged 12 homes, and one person had to be rescued, though no one was seriously hurt.

Image: https://www.nrdc.org/

Closer accidents

Feb. 1972 - collapse of tailings dam after heavy rain; the tailings traveled 27 km downstream, 125 people lost their lives, 500 homes were destroyed. Property and highway damage exceeded \$65 million.

WestVırginiaUniversity.

Image: <u>https://www.herald-dispatch.com/</u>

Main causes of accidents

- Clogged drains;
- Obstructed spillways;
- Settlement of the dam crest;
- Settlement and slope instability;
- Inadequate Maintenance
 - excess of vegetation, erosion, animal burrows;
- Cracking;
- Sink holes in the dam;
- Seepage.

Result in Overtopping (34% of accidents)

May result in Piping

WestVırginiaUniversity.

https://damsafety.org/dam-failures

Prevention: Inspection!

MSHA Dam Inspection Frequency

Condition	Inspection Frequency	Inspector				
All dams associated with underground	Once each	Mine S&H Inspector				
mines.	quarter					
All dams associated with surface mines.	Once every 6 months	Mine S&H Inspector				
All high hazard potential dama	At least once	Impoundment				
An figh hazaru potentiar danis.	each quarter	Specialist/Inspector				
All significant hazard potential dams.	At least every 6	Impoundment Specialist/Inspector				
	months					
Critical construction activities at high and significant hazard potential dams. +	As needed *	Impoundment Specialist/Inspector				
Unusual event (weather or seismic).	As needed **	Mine S&H Inspector or Impoundment Specialist/Inspector				

MSHA Handbook Series, Dam Inspection and Plan Review Handbook, Number PH21-V-6, January 2021

Inspection

Common Inspection Frequencies for High or Significant Hazard Potential Dams

Inspection and Monitoring Category	Inspection and Monitoring Frequency
Construction inspections	Daily - Weekly
Informal inspections during operation	Daily
Normal inspections during operation	Every 7 days
Formal inspections during operation	Yearly
Extreme weather or first filling	As needed per occurrence
Seismic event	As needed, and see table below

WestVirginiaUniversity.

MSHA Handbook Series, Dam Inspection and Plan Review Handbook, Number PH21-V-6, January 2021

Abandoned dams

- The long-term stability of the embankment and any seepage containment system is critical.
- To be considered abandoned, tailings dams need to be modified to ensure it is not capable of impounding water above the tailings.
- Inspection at its normal frequency should continue until the site is abandoned according to the design plan.

MSHA Handbook Series, Dam Inspection and Plan Review Handbook, Number PH21-V-6, January 2021

Suggested inspection (MSHA)

Sinkhole in pool area

Cracks on embankment slope

MSHA Handbook Series, Dam Inspection and Plan Review Handbook, Number PH21-V-6, January 2021

This project

MSHA recommended inspection equipment

- Note pad / Inspection form
- Weir and pipe flow charts
- Camera and extra batteries
- Calculator
- Global Positioning Unit (GPS)
- Measuring tape and 6-foot ruler
- Range finder or Abney level
- Water level indicator
- Survey ribbon
- Graduated bucket or container of known volume
- Clear container for checking clarity of flow
- Watch or timer
- Binoculars
- Handheld spotlight

Our proposed equipment

Objectives

- Develop a robotic drone, equipped with several complementary sensors, that will autonomously inspect several structures of a storage facility;
- Create AI-based hazard detection algorithms that will use multispectral and georeferenced images (i.e., thermal and visual) and 3D Point Clouds to detect hazards in the storage facility structure.

Previous work

Previous work

estVirginiaUniversity.

West Virginia University. BENJAMIN M. STATLER COLLEGE OF ENGINEERING AND MINERAL RESOURCES

Autonomous Robotic Early Warning System for Underground Stone Mining Safety

Field and Aerial Robotics (FARO) Lab and Navigation Lab (NavLab)

https://youtu.be/L iY3vGgxQ8

This project: Technical Approach

- Task 1.0 Project Management and Planning
- Task 2.0 Configuration assessment of coal refuse facilities and programming of autonomous inspection logics
 - 2.1 Preliminary facility configuration assessment
 - 2.2 Detailed assessment of inspection structures and locations
 - 2.3 Development of autonomous inspection logics
- Task 3.0 Drone assembly and programming
 - 3.1 Drone assembly
 - 3.2 Inspection of open-channel spillways and principal spillway inlets/outlets
 - 3.3 3D mapping of dam's crest and slopes
 - 3.4 Detection of leaking due to seepage through embankment slope and foundation
- Task 4.0 Development of hazard detection software and user interface
 - 4.1 Hazard detection
 - 4.2 User Interface application

2.1 – Preliminary facility configuration assessment

- Database with some characteristics of coal waste facilities in WV and neighboring states.
- Source: US Army Corps of Engineers, National Inventory of Dams (NID)

Dams in WV

Distribution of WV Dams

Characteristics of the database

- Tailing dams in WV and 100 miles radius from Morgantown
 - 65 from WV
 - 29 from OH
 - 4 from PA
 - 1 from VA

lestVirginiaUniversity.

Characteristics of the database

- The database consists of
 - 1. Keyhole Markup Language (KML)
 - used to visualize storage facilities and their NID data on Google Earth
 - 2. shapefile with NID (National Inventory of Dams) data of the facilities
 - 3. csv files with NID data of the facilities
 - 4. pdf and drawing files with the imported google image
 - will be used for detailed analysis.

Characteristics of the database

	Drive	2 Search in Drive	∓ ⊘ 🤈	©
+	New	Shared with me > DOE -	DE-FE0032206 - இ ⊞	(i)
• 4	My Drive	Name 🔨	Last mo 🔻	
•	Shared drives	1. KML and Google Earth Images	Jan 31, 2023	:
⊦∟□	Computers			
0	Shared with me	2. shapefiles	Jan 31, 2023	:
0	Recent	3. csv files	Jan 31, 2023	:
☆	Starred			
Ū	Trash	4. PDF files	Jan 31, 2023	:
\bigcirc	Storage			

Characteri

Q Search in Drive

Shared with me

 Λ

Name

<?xml version="1.0" encoding="UTF-8"?> <kml xmlns="http://www.opengis.net/kml/2.2" xmlns:gx="http://www.google.com/kml/ext/2.2"> <Document id="1367"> <Placemark id="1369"> <name>Moccasin Hollow Impoundment</name> <Point id="1368"> <coordinates>-81.48611111,38.0564000000004,0.0</coordinates> </Point> </Placemark> </Document> </kml>

- 1. KML and Google Earth Images
- A Shared with me
 - Recent

Shared drives

☆ Starred

A Drive

+ New

My Drive

Computers

•

0

- Trash

					federall	ownerNam	ownerTyp	primaryO	stateFed	huc2	huc4	huc6	huc8	zipcode	nation	stateKey	femaRegi	femaComm	geometry
	Char		tori		//V03520	WV BAPTIST CONVENTION	Private	Private	None	None	None	None	05030202	25271	USA	wv	5	Jackson County, West Virginia	POINT (-81.75778 38.79833)
	Chara	aC	len	5	//V01702	WV DOH	State	State	None	None	None	None	05030201	26456	USA	wv	5	Doddridge County, West Virginia	POINT (-80.74322 39.29048)
					//V05120	WHEELING CREEK WATERSHED COMMISSION	Local Government	Local Government	None	None	None	None	05030106	26033	USA	wv	None	Marshall County, West Virginia	POINT (-80.52500 39.95167)
	Drive	Q Se	arch in Drive		//V09913	Argus Energy WV, LLC	Private	Private	WV04- 00485- 01	05	0509	050901	05090102	25511	USA	wv	5	Wayne County, West Virginia	POINT (-82.28722 38.01389)
<u>т</u>	New	Shar	od with mo	<u>х</u> г	WV08511	TOWN OF PENNSBORO	Local Government	Local Government	None	None	None	None	05030203	26415	USA	wv	5	Ritchie County, West Virginia	POINT (-80.92556 39.28139)
Т	New	Share	eu with me	/ L						a								***	2 24
۵	My Drive	Name	^		//V06107	USACE - Pittsburgh District	Federal	Federal	None	None	None	None	05020003	26501	USA	WV	2	Monongalia County, West Virginia	POINT (-80.00998 39.58247)
ä	Shared drives	1	1. KML and Google	e Earth Im	NV00701	USACE - Huntington District	Federal	Federal	None	None	None	None	05050007	26601	USA	wv	None	Braxton County, West Virginia	POINT (-80.69294 38.66160)
с С	Computers Shared with me		2. shapefiles		WV07903	USACE - Huntington District	Federal	Federal	None	None	None	None	05050008	25168	USA	wv	5	Putnam County, West Virginia	POINT (-81.91307 38.52659)
0	Recent		3. csv files					Ja	an 31, 20)23		:							
☆	Starred																		
Ū	Trash	1	4. PDF files					Ja	an 31, 20)23		:							
\bigcirc	Storage																		

			Copy File	/ of wv_ Edit Vie	tailings w Insert	.XLSX Format	☆ 🗗 Data	⊘ Tools He	elp													0 =	Ċ	• 8	Share	G
		5	2	8 7	100% -	\$ %	0. ₄ 0.	0 123	Defaul	• - [10	+	B I	÷ A	<u></u>	⊞ 23	- ≣ -	s + <u>↓</u>	▼ <u>A</u> , ▼	⊕ [±) II. Y	- Σ				^	31
		A1	•	fx																						_
			Α	В	С	D	E	F	G	Н	1	J	к	L	М	N	0	Р	Q	R	S	Т	U	V	W	
		1		name	otherNam	formerNa	nidId	otherStr	federall	wnerNanown	erTypprin	naryO st	ateFed	separate	designer	nonFede	r stateReg	jurisdic	permitti	inspecti	enforcer	n sourceAg	latitude	longitud	county	st
		2	3	Maynarc	d Branch Slu	irry Impou	WV09913		WV09913	Argus Ene Priv	ate Priv	ate W	V04-004	85-01				No	No		No	Mine Safe	38.01388	-82.28722 V	Vayne	We 🧭
		3	220	Nile Stor	ne Slurry Im	poundme	WV05918		WV05918	.CC WEST Priv	ate Priv	ate		0		No	DMR	Yes	Yes	0	Yes	West Virg	37.595	-82.07444 N	/lingo	We
		4	243	Aep Proj	. 1301 Ash	Pond Dam	WV05307		WV05307	AMERICA Pub	lic Uti Pub	lic Utility	/ !	0		No	DWWM	Yes	Yes	3	Yes	West Virg	38.9675	-81.93305 N	Aason	We
		5	266	Big Bran	ch Coal Ref	use Facility	WV01506		WV01506	OLA COA Priv	ate Priv	ate		0		No	DMR	Yes	Yes	0	Yes	West Virg	38.3881	-81.034720	lay	We 🍈
-		5	285	Ragland	Slurry Impo	oundment	WV05922		WV05922	Coal-Mac Priv	ate Priv	ate W	V04-005	014-01			-	No	No	2	No	Mine Safe	37.68111	-82.08222 N	/ingo	We
	Drive	8	207	Sporn Bo	ottom Asn L	am	WW03313		WV053137	APPALACI PUD	nic Uti Pub		/ /	61.00		NO		res	Yes	3	res	West Virg	38.90833	-81.92944 N	larricon	We Q
	DIIIO	9	290		un siurry ini Sup No. 2 SI	urry Impo	1 10 005543		WW055451	the Marie Briv	ate Priv	ate W	V03-001	00-10				No	No		No	Mino Sofe	20 62082	-00.30 F	Accorde	We V
		10	294	Leer Slur	rry Cell	un y impo	WV09100		WV09109	Arch Coal Priv	ate Priv	ate W	V03-091	91-01				No	No		No	Mine Safe	39 32666	-79 96831 T	avlor	We
		11	296	Tunnel B	idge Slurry	Cell A	WV06907		WV06907	Alliance R Priv	ate Priv	ate W	V03-088	364-01				No	No		No	Mine Safe	40.15416	-80.66250 0)hio	We
+	New	12	297	Chess Re	fuse Dispos	sal Area No	WV00532		WV00532	Elk Run C Priv	ate Priv	ate W	V04-004	70-01				No	No		No	Mine Safe	38.00416	-81.57222 B	Boone	We +
		13	300	Aldrich E	Branch Slurr	y Impound	WV05919		WV05919	Coal-Mac Priv	ate Priv	ate W	V04-005	32-02				No	No		No	Mine Safe	37.81888	-82.30305 N	∕lingo	We
		14	302	Jarrells B	Branch Slurr	y Impound	WV00527		WV00527	Rockwell Priv	ate Priv	ate W	V04-004	67-01				No	No		No	Mine Safe	37.90805	-81.6525 B	3oone	We
_		15	305	Killarney	Slurry Imp	oundment	WV08130		WV08130	Pocahont Priv	ate Priv	ate W	V04-000	81-02				No	No		No	Mine Safe	37.62555	-81.27527 R	(aleigh	We
• 🗠	My Drive	16	310	Bragg Fo	rk Slurry Im	poundme	WV00534		WV00534	ERP Envir Priv	ate Priv	ate W	V04-053	98-01				No	No		No	Mine Safe	38.11194	-81.88972 B	soone	We
_		17	311	Twelvep	ole Refuse I	mpoundm	WV05920		WV05920	exington Priv	ate Priv	ate W	V04-004	86-01				No	No		No	Mine Safe	37.8525	-82.14027 N	∕lingo	We
¥⊒ ۲	Shared dri	18	315	Bottom /	A John Amo	os Flyash 1	WV07918		WV07918	APPALACI Pub	lic Uti Pub	lic Utility	/	0		No	DWWM	Yes	Yes	3	Yes	West Virg	38.47721	-81.83083 P	'utnam	We
		19	318	Delbarto	on Slurry Im	poundmer	WV05917		WV05917	DELBART(Priv	ate Priv	ate		0		No	DMR	Yes	Yes	0	Yes	West Virg	37.75164	-82.19789 N	∕lingo	We
ᆞᄂᆷ	Computers	20	319	Amonate	e Slurry Imp	oundmen	1 WV04701		WV04701	Consolida Priv	ate Priv	ate W	V04-007	37-01				No	No		No	Mine Safe	37.20694	-81.64722 N	AcDowel	We
0)	Observed with	21	320	Left Abu	tment Slurr	y Impound	WV09914		WV09914	exington Priv	ate Priv	ate W	V04-080	30-02				No	No		No	Mine Safe	38.15166	-82.34722 V	Vayne	We
ő	Shared wit	22	322	Ben Cree	ek Slurry Im	poundme	WV05921		WV05921	exington Priv	ate Priv	ate W	V04-004	76-01				No	No		No	Mine Safe	37.61527	-81.95833 N	/lingo	We
S	Recent				1	3. cs	v files *	*						Jai	n 31, 20	23		:	/							
☆	Starred																									
Ū	Trash				1	4. PE)F files							Jar	n 31, 20	23		:								
\bigcirc	Storage																									

Characteristic

	Drive	Q Se	earch in Drive
ł	New	Shar	ed with me > DOE - D
٥	My Drive	Name	\uparrow
<u></u>	Shared drives	1	1. KML and Google Earth Images
_0	Computers		
2	Shared with me		2. shapefiles
J	Recent		3. csv files
☆	Starred		
Î	Trash	1	4. PDF files
\sim	Storage		

.

۰ſ

- Hazard levels (Tailing Dams in WV)
 - 52 High
 - Failure would likely result in loss of human life, extensive property damage to homes and other structures, or cause flooding of major highways such as State roads or interstates
 - 8 Significant
 - Failure could possibly result in loss of life or increase flood risks to roads and buildings, with no more than 2 houses impacted and less than six lives in jeopardy
 - 1 Low
 - Failure is unlikely to result in loss of life and only minor increases to existing flood levels at roads and buildings is expected.
 - 4 Undetermined

 some of the facilities in the database were reclaimed and are not active.

 parameters relevant to the project objectives: dam height, dam length, hydraulic height, structural height, and surface area.

Dam Height: vertical distance between the lowest point on the crest of the dam and the lowest point in the original streambed

Mean height: 193 ft (59m) Max height: 780 ft (238 m)

• parameters relevant to the project objectives: dam height, dam length, hydraulic height, structural height, and surface area.

Dam Length: *length along the top of the dam*

Mean Length: 1,624 ft (0.3 miles) Maximum Length: 13,000 ft (2.5 miles)

 parameters relevant to the project objectives: dam height, dam length, hydraulic height, structural height, and surface area.

Surface Area: Surface area, in acres, of the impoundment at its normal retention level

Mean Area: 53 acres Maximum Area: 292 acres

2.2 – Detailed Assessment of inspection structures and locations

- field survey of some coal waste facilities in WV
- use of drones, hand-held devices and cameras.

- 2.3 Autonomous inspection logics
 - Development of drone inspection logics according to *MSHA Dam Inspection and Plan Review Manual,* and consultation with a MSHA inspector and facility operators
 - Determination inspection parameters of each critical structural component
 - flight path
 - flight distance to the structure
 - type of sensor and monitoring data

3.1 – Drone assembly

- Purchase, assembly, test, and initial programing of the drone.
- Ground control station (laptop)
 - Robot Operating System (ROS)
 - Data collection and storage
 - Motion planning and execution

Drone selection - criteria

Required

- Made in USA (to comply with DOE FOA)
- Remote ID (to comply with FAA)
- Programable by a computer with SDK (necessary for automation)
- RGB Image (required for Dam inspection)
- Thermal Image (required for Seepage detection)
- Lidar (required for 3D Mapping)

Desirable

- NDAA & TAA compliant (to facilitate use by governmental agencies)
- RTK (for precise positioning)
- Easy operation (to facilitate transfer of technology)
- Affordable (to facilitate transfer of technology)

WestVirginiaUniversity.

FAA - Federal Aviation Administration NDAA - National Defense Authorization Act TAA - Trade Agreements Act

Drone selection

Model	Company	Country	SDK Control	SDK Payload	RGB Resolution	Gimbal	Thermal	RTK	Payload (for LIDAR)	Price
M300 RTK	DJI	China	Yes	Yes	20 MB Zoom	Yes	Payload H20T	Yes	2.7 kg	\$29,500
M210 RTK	DJI	China	Yes	Yes	12 MP	Yes	Payload XT2 FLIR	Yes	1.4 kg	\$15,100
Anafi USA	Parrot	France	Ground SDK	Yes	21 MP	Yes	Included	No	00 kg	\$7,000
Anafi USA GOV	Parrot	USA	Ground SDK	Yes	21 MP	Yes	Included	No	00 kg	\$14,000
Anafi Al	Parrot	France	Yes	Yes	48 MP	Yes	No	No	00 kg	\$ 4,500
Anafi Thermal	Parrot	France	Ground SDK	No	21 MP	Yes	Included	No	00 kg	\$3,500
Siras	Teledyne Flir	USA	No	No	16 MP	Yes	Included	No	00 kg	\$9 <i>,</i> 695
X2D - Thermal	Skydio	USA	No	No	12.3 MP	Yes	Included	No	00 kg	\$10,999
Astro Map	Freefly	USA	MAVSDK	No	61 MP	Yes	No	Yes	1.5 kg	\$24,109
Alta X	Freefly	USA	MAVSDK	Wiris Payload	RGB Payload	Yes	No	Yes	15.87 kg	\$24,220
Commander 2	Draganflyer	Canada	No	No	RGB Payload	Yes	Payload Thermal	Yes	1.0 kg	\$17,107
EVO II DUAL										
640T V2	Autel	USA/China	Mobile SDK	Mobile SDK	48 MP	Yes	Included	Optional	150 g	\$4,800
EVO II RTK V2	Autel	USA/China	Mobile SDK	Mobile SDK	48 MP	Yes	Included	Yes	150 g	\$4,800
EVO II 640T V3	Autel	USA/China	Mobile SDK	Mobile SDK	50 MP	Yes	Included	Optional	150 g	\$5 <i>,</i> 999
EVO II 640T RTK	Autel	USA/China	Mobile SDK	Mobile SDK	50 MP	Yes	Included	No	150 g	\$7,699
EVO Max 4T	Autel	USA/China	Mobile SDK	Mobile SDK	50 MP	Yes	Included	Optional	150 g	\$8,999
Accent X/X8	CamFlite	USA	No	No	RGB Payload	Yes	No	Yes	4.5 kg	\$26,673
H520E-RTK	Yuneec	China	No	No	20 MP	Yes	Payload CGORTX	Yes	??	\$16,300

ANAFI USA GOV drone

- Required Made in USA (to comply with DOE FOA) Remote ID (to comply with FAA) Programable by a computer with SDK (necessary for automation) RGB Image (required for Dam inspection) Thermal Image (required for Seepage detection) Lidar (required for 3D Mapping)
 - Desirable
 - NDAA & TAA compliant (to facilitate use by governmental agencies)
 - RTK (for precise positioning)
 - Easy operation (to facilitate transfer of technology)
 - Affordable (to facilitate transfer of technology)

FAA - Federal Aviation Administration NDAA - National Defense Authorization Act TAA - Trade Agreements Act

Do we need Lidar and RTK?

nttps://youtu.be/2cBsiPxzV44

Lidar - Light Detection and Ranging (creates 3D point clouds) RTK - Real-time kinematic positioning (increase positioning accuracy)

Do we need Lidar and RTK?

Results from COLMAP¹ free software

¹Schönberger, J. L., Zheng, E., Frahm, J. M., & Pollefeys, M. (2016). Pixelwise view selection for unstructured multi-view stereo. In *Computer Vision–ECCV* 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14 (pp. 501-518). Springer International Publishing.

Do we need Lidar and RTK?

Original image

3.2 – Inspection of spillways

- development of software to autonomously inspection openchannel spillways and principal spillway inlets/outlets with the drone.
- Structure position using GPS.
- Object detection using computer vision and AI.

https://dnr.nebraska.gov/dam-safety/common-problems-dams https://www.ars.usda.gov/

3.3 – 3D mapping of dams

- development of a software that creates tri-dimensional maps of coal waste facilities with a drone
- Focus on crest and slope
- Investigations on required resolution, optimal coverage,

etc.

estVirginiaUniversity.

- 3.4 Seepage detection
 - development of software to detect leaking and infiltration in the embankment slope and foundation of coal waste facilities using the drone.
 - Computer vision based on thermal images.
 - Investigation of the best weather, season, time of day, distance to the structure, etc.

- 4.1 Hazard detection
 - development of algorithms for hazard detection in coal waste facilities using data collected by the drone
 - AI-based software
 - Comparison of time-lapse data (images, LIDAR point clouds)
 - Erosion and crack
 - Excess of vegetation
 - Animal activity, etc

4.2 – User interface

 development of a user interface to facilitate drone control and hazard detection

TT 1 //	Task nome		Yea	ar 1			Ye	ar 2		Year 3				
Task #	Task name	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
1.0	Project Management and Planning			Ī										
2.0	Configuration assessment of coal refu	ise fac	ilities a	and pr	ogran	nming	of aut	onom	ous ins	pectio	n logio	cs	1	
2.1	Preliminary facility configuration assessment												Ζ.,	
2.2	Detailed assessment of inspection structures and locations								_/					
2.3	Development of autonomous inspection logics													
3.0	Drone assembly and programming		1			Y		7		1		1		
3.1	Drone assembly								y le	1	C	1		
3.2	Inspection of open-channel spillways and principal spillway inlets/outlets								X	7	X			
3.3	3D mapping of dam's crest and slopes											9		
3.4	Detection of leaking due to seepage through embankment slope and foundation													
4.0	Development of hazard detection soft	ware	and us	e <mark>r int</mark> e	erface									
4.1	Hazard detection						/							
4.2	User Interface application						1		/ /					

Timeline

Project Benefits

- At least 4 students trained in multidisciplinary technology
 - 2 PhD students
 - At least 2 undergraduate students (to be hired)
 - Recruitment focused on underrepresented groups
- Efficient methodology/technology for coal storage facility inspection
 - Reduced time of inspection
 - Increase in inspection frequency
 - Automatic logging and archiving

Project Benefits

- More efficient inspection may help prevent accidents
 - Social impact
 - Environmental impact
- Technology transfer
 - TRL 5 expected at the end of the project (Technology validated in relevant environment)
 - Stakeholders feedback and use

Acknowledgments

- This project is supported by the U.S. Department of Energy's University Training and Research for Fossil Energy and Carbon Management Program – UCR
- Thanks to
 - NETL team
 - Jason Hissam (Federal Project Manager)
 - George Kusko (Contract Specialist)
 - Xingbo Liu (Research Dean and Project advisor WVU)
 - Kathleen Cullen (Grant administrator WVU)
 - Office of Sponsored Programs (OSP/WVU)

Thank you!

Guilherme.Pereira@mail.wvu.edu

ltulu@mail.wvu.edu

