

Integration of LIBS with Machine Learning for Real-Time Monitoring of Feedstock in H₂ Gasification Applications

2023 FECM Spring R&D Project Review Meeting Project DE-FE0032177 (10/01/2022 – 09/30/2024) April 18, 2023

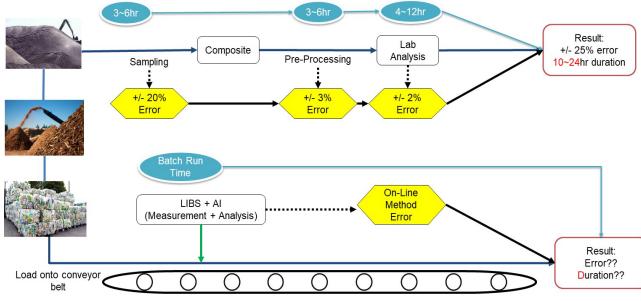
- Project Background
- Proposed Technology
- Project Objectives
- Technical Approach
- □ Activities Up to Date

Project Background

- □ Gasification technologies for non-recyclable plastics, biomass and legacy coal waste are of merit.
- □ It builds upon technologies developed for coal gasification and favors a future hydrogen circular economy concept.
- DOE has identified the heterogeneity of these waste streams as a significant barrier for any conversion process to be economically viable.
- DOE has included feedstock characterization methods in the list of R&D opportunities to improve:
 - □ Cost-effectiveness of waste conversion technologies,
 - Process and quality control,
 - **Relating feedstock composition to conversion performance.**

Project Background

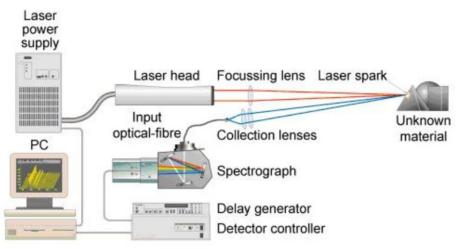
□ Current State of Technology (SOT)


- Municipal Solid Waste (MSW) is a very heterogeneous material, which makes it difficult for sampling and analysis.
- No ready-to-use, rapid/real-time measurement techniques available for waste feedstock applications.
- Critical review of real-time methods for MSW quality monitoring (C. Vrancken et al., 2017):
 - Most techniques can only measure a limited number of parameters
 - Technologies need additional development to fully adapt them to the gasification environment
 - New algorithms are needed for accurate measurements and automatic material identification
- Waste feedstock processing presents similarities to other industries, which could improve material management by using advanced analytical technology.

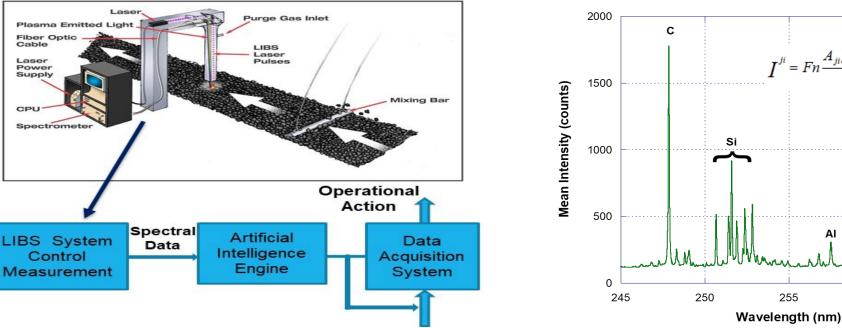
Value Proposition

ENERGY RESEARCH CENTER

- Enable continuous on-line measurement of waste feedstock properties to confirm product specifications:
 - Substantially eliminate cost of sampling, compositing and laboratory analysis of feedstock.
 - Improved feedstock processing system performance and product QA/QC
 - Reduced operator interaction with the equipment and waste –
 improved plant safety
- Feed-forward process control of downstream gasification conversion system
 - Continuous, on-line data on feedstock properties will enable optimization of conversion process operating conditions, including gasification temperature, and steam and air or oxygen feed rates:
 - Increased product yield and revenues
 - o Improved product quality
 - Reduced reactant consumption of steam and oxygen
 - Improved process reliability reduced outage and maintenance costs
- Increased revenue and reduced O&M costs should yield less than 1 year payback for projected instrument cost in range of \$300 \$500K.



On-Line System Assessment, Based on ASTM D6543


Proposed Technology

- A system that will allow rapid, in-situ characterization of gasifier feedstock, providing critical data in minutes for continuous confirmation of feedstock specifications, and potential feed-forward process control of downstream hydrogen production.
- This would represent a hundred-fold improvement in the feedstock characterization throughput, over current methods of grab sampling, compositing, and costly laboratory analyses.

255

 $I^{ji} = Fn \frac{A_{ji}g_j e - (E_j / kT)}{2}$

2023 Spring R&D Project Review Meeting - Project DE-FE0032177

265

Mn

Fe

260

RESEARCI CENTER

Background Results of Technology

2300 Target FEGT

- Meas.FEGT

- Pred AFT

Exit

- 2850

- 2700

2400

2250

- 2100

1950

Configuration

+/- 50 Btu/lb

RMSE = +/- 15.25 Btu/lb

12.000

13,000

14.000

Measured FEGT (Deg. F)

Predicted Ash Fusion

Stop

Heating Value (dry basis)

Arundo Dena

10.000

Heating Value from Lab Data (Btu/lb)

11.000

ofrefied Woo

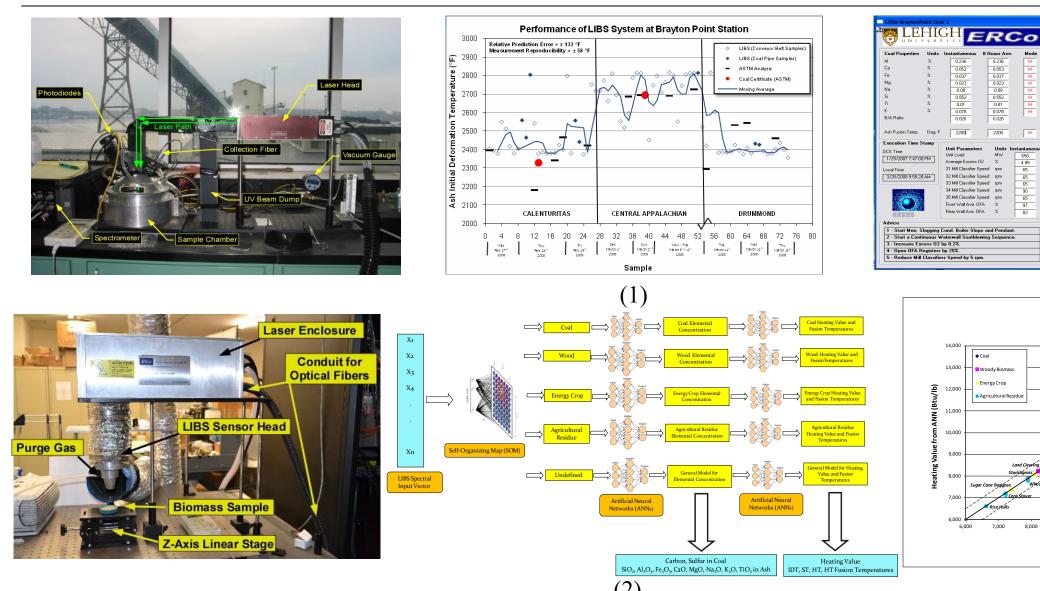
Temp. (Deg. F)

4.85

65

65

97

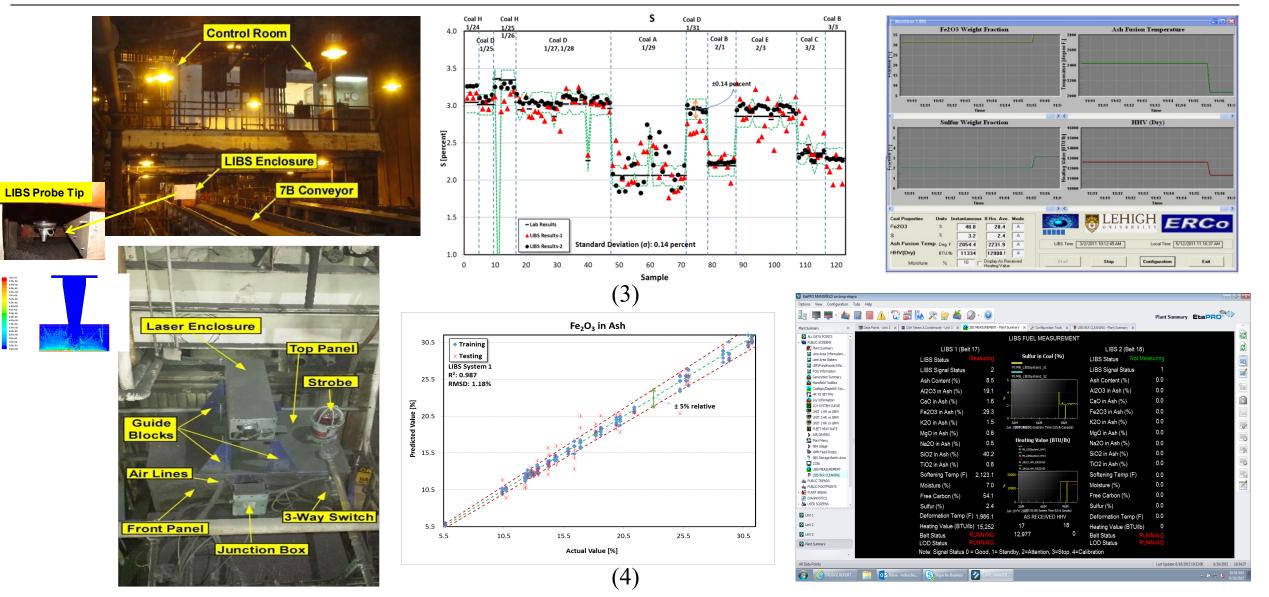

and Clear

8.000

9.000

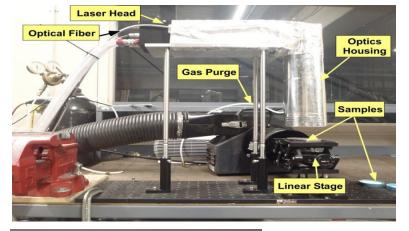
2850

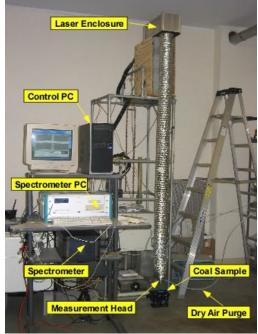
1650



2023 Spring R&D Project Review Meeting - Project DE-FE0032177

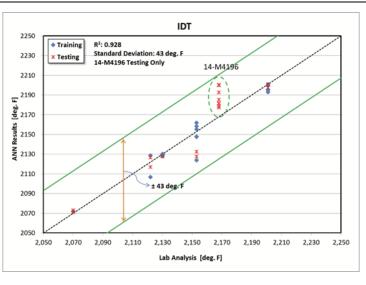
Background Results of Technology

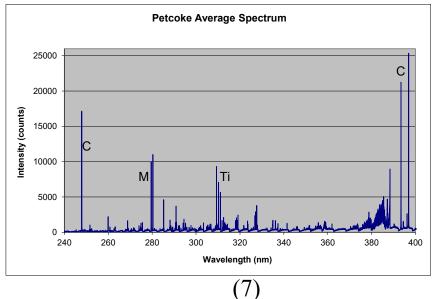


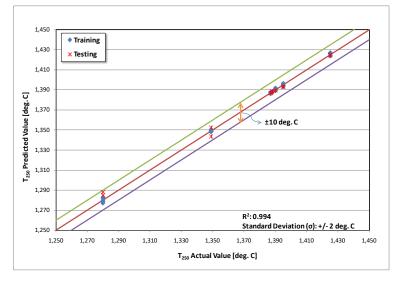


2023 Spring R&D Project Review Meeting - Project DE-FE0032177

Background Results of Technology





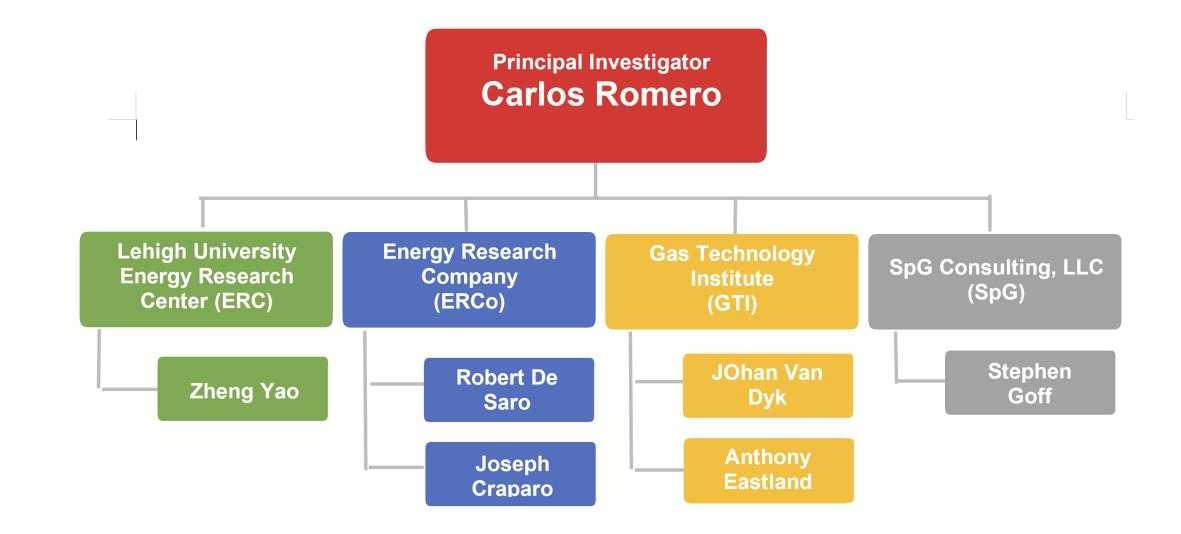


2023 Spring R&D Project Review Meeting - Project DE-FE0032177

Project Objectives

Project Overall Goal

Assess the feasibility and potential of using Laser Induced Breakdown Spectroscopy (LIBS) linked to Artificial Intelligence-Machine Learning (AI-ML), for real-time and in-situ chemical analysis of waste materials (biomass, waste plastics and legacy coal waste; individually and in blends), of interest to hydrogen production gasifier operators.


Project Objectives

- 1. Assemble and analyze a material inventory.
- 2. Design and assemble a laboratory LIBS system. Optimize measurement technique and develop an analytical database.
- 3. Develop and validate ML algorithms for LIBS data processing.
- 4. Assess the benefit of incorporating the proposed system on upgraded operational protocols and control schemes of gasifiers for hydrogen production.
- 5. Perform a techno-economic analysis (TEA) of the proposed technology integrated with hydrogen gasifiers.

Project Organization

Technical Approach

J Task 1 – Project Management

- 1. Project Management Plan (PMP)
- 2. Technology Maturation Plan (TMP)
- 3. Environmental Justice Questionnaire (EJQ)

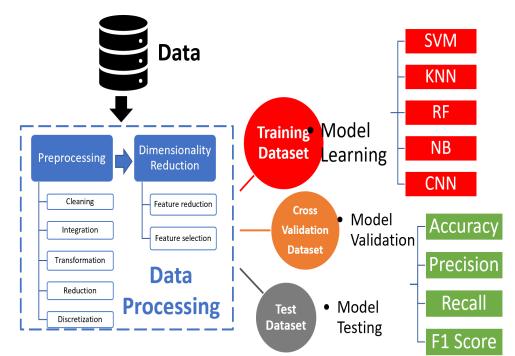
Task 2 – Material Inventory

1. Material Sampling

Component	Percentage	Heat Content (dry basis) (Btu/lb)
#1 Polyethylene terephthalate (PET)	40.0	10,250
#2 High density polyethylene (HDPE)	18.0	19,000
#3 Polyvinyl chloride (PVC)	5.9	8,250
#4 Low density polyethylene (LDPE)	18.0	12,050
#5 Polypropylene (PP)	2.0	19,000
#6 Polystyrene (PS)	12.0	17,800
#7 Other*	4.1	13,332
Average Mixed Waste Plastic	100	13,240

- Mixed waste plastics, biomass (non-torrefied southern pine, torrefied southern pine, switchgrass), and legacy coal wastes (Illinois No. 6 bituminous, Montana Rosebud PRB sub-Bituminous, North Dakota lignite).
- 2. Material Processing and Lab Analysis
 - Develop a procedure for sample processing, analysis, chain of custody and quality assurance.

2023 Spring R&D Project Review Meeting - Project DE-FE0032177

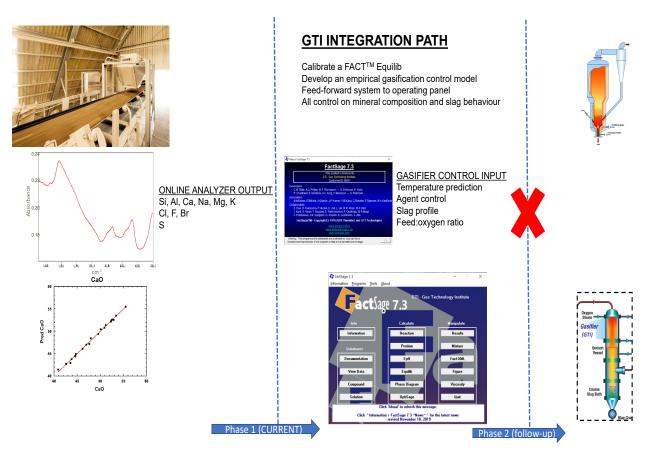

Technical Approach

Task 3 – LIBS Lab Testing

- Design and assemble a safe and reliable LIBS system for detection and quantification of material samples under both static and dynamic conditions (material flow on a small-scale research conveyor belt).
- Optimize measurement technique
- Develop an analytical database using individual parent sources and blends of all three types of materials.
- □ Assess signal-to-noise, R² and precision of the LIBS technique

Task 4 – Al Modeling and Validation

- Process LIBS data by ML modeling using neural networks, random forest and support vector machine.
- □ Parameters of interest: proximate analysis (fixed carbon, ash content, volatile matter, and moisture), ultimate analysis, calorific value, ash composition, chloride content, fusion temperatures (initial and softening), viscosity temperatures (T₂₅₀ and T_{10,000}), and thermal conductivity.



Technical Approach

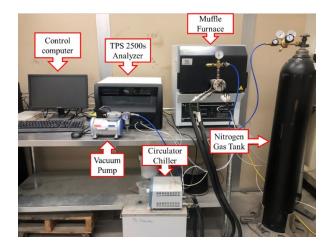
- Task 5 Integration of LIBS+ML Results with Gasifier Control
 - Develop phase equilibrium model to predict gasifier operational parameters (i.e., slag profile).
 - Combine empirical gasifier model with phase equilibrium results to provide input/output to a feed-forward gasifier control scheme.

Task 6 – Technoeconomic Analysis

- Estimate costs of full-scale system design, procurement and deployment of LIBS+ML system.
- Perform TEA analysis for the proposed technology integrated with hydrogen gasifiers.

Project Schedule

	Milestone 1: Project kickoff meeting										Task/Subtas k Number	Deliverable Title	Due Date
10/,	10/2022 /22 12//22	2//23 4	//23 6//23	8//23	10//23	12//23	2//24	4//24 6//2	4 8//24	10//24	1.1	Project Management Plan (PMP)	Update due 30 days after award. Revisions to the PMP shall be submitted as requested by the NETL Program Manager.
1.0 Project Management and Planning			e 2: Finish material									T 1 1	Preliminary TMP is due 90 days after award. Updates to
2.0 Material Inventory & Standardized Analysis Results		Inventory 2/2023	y and analysis results				Milestor	ne 3: Finish LIBS lab te	est 1/2024		1.2	Technology Maturation Plan (TMP)	the TMP shall be submitted, as needed, throughout the project period of performance. A final TMP is due within 90 days prior to project completion.
3.0 LIBS laboratory Testing Results								Milestone 4: Fi	nish AI modeling 3/2	2024	1.3	Environmental Justice Questionnaire	Updated Environmental Justice Questionnaire to be submitted as an attachment to the final report.
4.0 Al Modeling and Validation Results									Milestone 5: Finish with gasifier 5/2024		2.0	Material Inventory List and Standardized Analysis Results	4 months after project start date
5.0 Integration LIBS+ML Results with Gasifier Control									Finis	estone 6: sh TEA	3.0	LIBS laboratory Testing Results	16 months after project start date
6.0 Techno-Economic Analysis									7/20 Mileston Reporti	ne 7: 🕨	4.0	AI Modeling and Validation Results	18 months after project start date
7.0 Report									Report		5.0	Integration of LIBS+ML Results with Gasifier Control	20 months after project start date
											6.0	Techno-Economic Analysis	22 months after project start date
											7.0	Report	Periodical and final reports will be submitted according to DOE requirement



to DOE requirement.

Work on Task 2

- Gathered coal material samples and analysis from Penn State University
- Gathered selected biomass material samples from Idaho National Lab, including torrefied pine.
- Gathered coal refuse and biomass samples from Olympus Power
- □ Chemical Analyses performed by G&C Analytical Lab
- Thermal conductivity analyses performed at Lehigh University (Hot Disk TPS 2500s Thermal Constant Analyzer)

0.11.1							
Switchgr	ass	REFERENCE MATERIA					
Pedigree							
Location: Garvin Cou	inty, OK	Harvested: 2012 Received at INL: 2013 Sample Preparation: Ground to pass through a 1-in sieve using a Vermeer BG480 grinder					
Cultivar: Alamo				-			
Composition	oosition ^e of Reference Sw %Extractable Inorganics	sieve using		nder			
Composition	%Extractable	sieve using	sa Vermeer BG480 grin	nder & 2/2015) %Water Extrac			
Composition Table 1. Chemical comp %Structural Ash	%Extractable Inorganics	sieve using itchgrass (mean of anal %Structural Protein	a Vermeer BG480 grin yses completed 11/2014 %Extractable Protein	nder & 2/2015) %Water Extrao Glucan ^b			
Composition Table 1. Chemical comp %Structural Ash 1.88 %Water Extracted	%Extractable Inorganics 2.07 %Water Extractives	sieve using itchgrass (mean of anal %Structural Protein 1.51	a Vermeer BG480 grin yses completed 11/2014 %Extractable Protein 0.54	ender & 2/2015) %Water Extrac Glucan ^b 2.28			
Composition Table 1. Chemical comp %Structural Ash 1.88 %Water Extracted Xylan ⁵	%Extractable Inorganics 2.07 %Water Extractives Others	sieve using itchgrass (mean of anal %Structural Protein 1.51 %EtOH Extractives	yses completed 11/2014 %Extractable Protein 0.54 %Lignin	nder & 2/2015) %Water Extrac Glucan ^b 2.28 %Glucan			

Proximate, Ultimate & Calorimetry

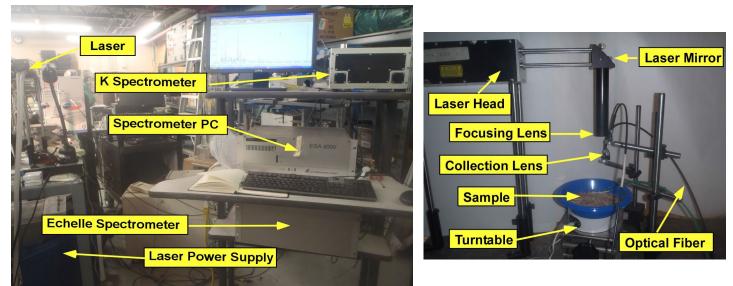
Table 2. Proximate, ultimate, and calorific values for Reference Switchgrass (reported on a dry basis; completed 6/2014)

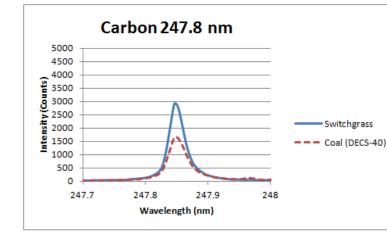
		Proximate ^a			Ultimate ^b	Calorimetry ^c		
%Vola	atile	%Ash	%Fixed Carbon	%Hydrogen	%Carbon	%Nitrogen	нну	LHV
80.	2	4.2	15.6	5.7	47.2	0.5	8077	6749

^aProximate analysis was done according to ASTM D 5142-09

^bUltimate analysis was conducted using a modified ASTM D5373-10 method (Flour and Plant Tissue Method) that uses a slightly different burn profile

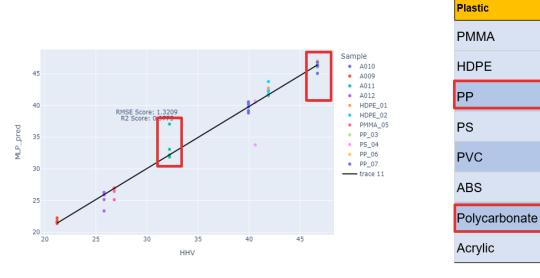
'Heating values (HHV, LHV) were determined with a calorimeter using ASTM D5865-10


Page 1 of 3



Work on Task 3

- Completed LIBS laboratory setup
 Began collecting LIBS data from material samples
- 20 measurements/sample, 200
 averaged spectra/measurement
 (4,000 laser shots!)
- Excellent signal-to-noise so far for all elements of interest


LIBS Signal-to-Noise from Switchgrass (Selected Peaks)

Wavelength	247.86	249.77	259.942	279.522	288.159	323.452	330.294	396.152	422.673	589.00	670.78	777.47	766.49
Element	CI	ΒI	Fe II	Mg II	Si I	Ti II	Zn I	ALI	Ca II	Na I	Li I	01	КI
S/N	786.32	7.67	111.51	2030.27	623.51	25.81	8.61	93.04	680.62	262.27	6.94	4.31	831.36

Work on Task 4

- AI modeling underway (decision tree, support vector machine (SVM), random forets, and multi-layer perceptron (MLP) neural networks).
- New approaches being develop to address repeatability of LIBS spectral data (intensity correction approach) and accuracy of prediction.

MLP Modeling Results Compared to Analytical Data

19

2023 Spring R&D Project Review Meeting - Project DE-FE0032177

HHV

26.8

41.9

46.7

40.6

21.2

39.94

32.21

25.8

LEHIGH UNIVERSITY

For More Information, Contact:

Dr. Carlos Romero Zheng Yao

Lehigh University Energy Research Center 117 ATLSS Drive Bethlehem, PA 18015-4729 Telephone: (610) 758-4090 Fax: (610) 758-5959 www.lehigh.edu/energy