

Effect of Impurities on Supercritical Carbon Dioxide Compatibility (FWP-FEAA144)

B. A. Pint¹, M. J. Lance², R. Pillai¹, J. R. Keiser¹

¹Corrosion Science & Technology Group ²Nuclear Energy Materials Microanalysis Group Materials Science & Technology Division Oak Ridge National Laboratory, Oak Ridge, TN

April 2023

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

2023 Gordon Research Conference on High Temperature Corrosion

- July 16-21, 2023
- Colby Sawyer College - New London, NH
- You're all invited to attend
- For students and early career:
 - Gordon Research Seminar 7/15-16

Acknowledgments

- Funding: U.S. Department of Energy, Office of Fossil Energy and Carbon Management, Advanced Energy Materials Program
 - FEI Talos F200X STEM provided by the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program & the Nuclear Science User Facilities
- M. Howell (retired), B. Johnston, G. Garner— oxidation experiments
- T. Lowe SEM, image analysis
- V. Cox (departed), D. Newberry metallography
- Special thanks for alloys:
 - Tenaris
 - EPRI
 - Sam Sham, INL (US heat, alloy 709)

sCO₂ cycles are of wide interest: goal is to commercialize!

Supercritical CO₂ applications

sCO₂ has many unique & attractive aspects

Lots of potential What will help de-risk the technology?

Interest in >700°C for high efficiency

Feher, 1965 50% sCO₂ eff @ >720°C

- Low critical point (31°C/7.4 MPa) High, liquid-like density Flexible, small turbomachinery

CAK RIDGE National Laboratory

Supercritical CO₂ Allam cycle: first clean fossil energy?

NetPower 25MWe test facility (Texas)

Exelon, Toshiba, CB&I, 8Rivers Capital: \$140m

The prototype NET Power plant near Houston, Texas, is testing an emission-free technology designed to compete with conventional fossil power.

CHICAGO BRIDGE & IROI

November 2021: plant connected to grid (announced plans for 280MW) Moving forward with limited compatibility data! As audacious as Eddystone in 1960

Material challenges:

Combustor: 1150°C (!?!) (now 900°C) Turbine exit: 750°C/300 bar Combustion impurities: O₂, H₂O, SO₂?

Thermodynamics: Oxygen levels similar in steam/CO₂ Concern about high C activity at m-o interface

CAK RIDGE General conclusion: internal carburization concern for Fe-based alloys

sCO₂ compatibility: broad range of conditions considered

400°-650°C: concern about steel carburization

- Well-known issue from CO₂cooled reactors
 - Grade 9 steel current issue
- 550°-600°C transition temperature for normal austenitic steels
- Key to low-cost technology

National Laboratory

650°-800°C: Ni-based alloys

- No issues for Ni-based alloys
 - Low C solubility, protective Cr_2O_3 formation
- Similar rates for air, CO₂ and sCO₂

- Little or no P effect @ 750°C

>800°C: challenging for superalloys/cermets/FeCrAl

- Initial results at 0.1 & 2 MPa
 - Subcritical P effect observed
- Mo/W cermets need coating
- Accelerated attack of Nibased superalloys
- SiC promising, but not MoSi₂
- FeCrAl attacked at 1200°C

 $|_{0.1 \text{ MPa}}$ – Al₂O₃ supposed protective?

CAK RIDGE ORNL steel project started in August 2019 (paused in 2021)

Test matrix & progress

Temperature	RG sCO ₂	+1%O ₂ +0.1%H ₂ O			
450°C (842°F)	2000 h	1000 h			
550°C (1022°F)	2000 h	1000 h			
650°C (1202°F)	1000 h	1000 h			

Autoclave: 300 bar sCO₂ 500-h cycles

~5 cm² alloy coupons + tensile specimens

• Four primary alloys in test matrix

- T91 (9Cr-1Mo)
- VM12 (~11Cr)
- 316H (conventional stainless steel)
- (NF)709 (advanced austenitic, 20Cr-25Ni+Nb)
- 10 specimens of each alloy: starting point
- With and without impurities (open vs. closed)

Alloy	UNS	Cr	Ni	Mn	Si	С	Ν	Other
Gr.91	K90901	8.6	0.3	0.5	0.4	.10	.05	0.9Mo,0.2V
VM12	12CrCoW	11.5	0.4	0.4	0.4	.12	.04	1.6W,1.5Co
316H	\$31609	16.3	10.0	0.8	0.5	.04	.04	2.0Mo,0.3Co
709	\$31025	20.1	25.2	0.9	0.4	.06	.15	1.5Mo,0.2Nb

Baseline of research grade (RG) CO_2 : $\leq 5 \text{ ppm } H_2O$ and $\leq 5 \text{ ppm } O_2$

Mass change of 5-6 specimens in RG sCO₂ plotted

- One specimen of each alloy removed at 500 h for metallography
- High mass gains for 9-12%Cr steels in all cases
- Low mass gains for FCC steels except 316H at 650°C
 - Ran 450°C experiment to 2,000 h for improved assessment

Measured rates in sCO₂ consistent with the literature

- Metric developed for Solar CSP
 - Slow rate = OK for 100kh life
- Ni-based alloys all "good"
 Lifetime model: ≤ 800°C = 100kh

Steel limitations

- Ferritic-martensitic alloys <500°C
- Austenitic alloys <600°C
 - Obvious jump in kinetics
- Advanced austenitics (709), better
 - Value in 20-25%Cr, 20-25%Ni
 - Low values hard to measure

9-12Cr steels have similar rates in 276 bar steam

Based on CSP (solar) metric: all limited to <550°C with impurities Rates for 709 (UNS S31025): may not reflect steady state at 1000 h

Bulk C measurements: Fe-rich oxides allow C ingress

- Measurements by combustion analysis, increasing with time
- Focus on 650°C results, less ingress at 600° and 550°C
- sCO₂ impurities tend to increase C ingress

CAK RIDGE National Laboratory

709 (20Cr/25Ni): resistant to C ingress 1000h up to 650°C 316H at 650°C: thick Fe-rich oxide + C ingress + embrittlement

1000 h at each condition

13 **CAK RIDGE** National Laboratory

Pure sCO₂: Cr₂O₃ scale prevents C ingress

CAK RIDGE

- 25mm long dogbone specimens
- 316H (16Cr-10Ni)
 - Cr-rich oxides = low mass gain + good ductility
 - Fe-rich oxides = high mass gain + embrittlement
- 709 (20Cr-25Ni):
 - no loss in ductility in this experiment

Pint, ECS Interface 30 (2021) 67

709/air, 650°C/1000 h: Talos EDS maps of scale, looks "normal"

709/air, 650°C/1000 h: Talos EDS line profile of Cr-rich scale

- Small region shows Cr depletion near surface

16

709/sCO₂, 650°C/1000 h: Talos EDS maps of thicker multi-layer scale

709/sCO₂, 650°C/1000 h: Talos EDS line profile of multi-layer scale

Scale formed in sCO₂ was much thicker

Automated image analysis: >1200 measurements from all TEM images

3 Coatings: initial sCO₂ testing at 650°C \pm O₂/H₂O

- T91 + 316H: pack Cr coating
- T91: pack AI coating
- Some benefit from coatings but less effective with impurities

3 coatings: initial sCO₂ testing at 650°C \pm O₂/H₂O

- High mass gains for uncoated 9Cr steel: variable due to spallation
- Low mass gain in RG sCO₂ increased with impurities

Cr coating on T91 more effective in RG sCO₂

- Thin scale formed in RG sCO₂ : not thick Fe-rich oxide
- Oxide nodules formed with O_2/H_2O additions

Precipitates in coating after 1,000 h at 650°C in RG sCO₂

- Coating ~110 µm thick
- Confirmed carbide precipitates by EPMA

sCO₂ with impurities: forming Fe-rich oxide nodules

- Unable to form protective Cr-rich oxide with $1\%O_2+0.1\%H_2O$
- Cr-rich precipitates also formed beneath scale after 1000 h

sCO₂ with impurities: significant Cr consumption

- 1000 h/650°C: higher Cr consumption with impurities
- 650°C: temperature too high for ~110 µm thick Cr pack coating
- Next: testing at 550°C

CAK RIDGE

25

Summary: sCO₂ is a challenging environment

- At 650°-800°C, Ni-based alloys appear compatible
- Steels degrading at 550°-650°C in sCO₂
 - 9-12%Cr steels may be limited to ~500°C
 - Fe-rich oxide formation observed in sCO_2 similar to sH_2O
 - 550°C and higher issue with C ingress
 - 316H at 600°-650°C in RG sCO $_2$
 - Carbon ingress + embrittlement
 - 709 formed Cr-rich oxide in all cases
 - Thicker, more complex scale forms in sCO₂
 - Could scale break down at longer times?
 - Increased attack when O_2 and H_2O impurities in sCO_2
- Opportunity for coatings?
 - Pack Cr and AI coatings evaluated on T91 and 316H at 650°C
 - Cr on T91: reduced mass gain but internal carbides observed in sCO₂
 - Lower temperature (550°C) sCO₂ evaluations in progress

CAK RIDGE

Questions?

2,000

0

0

4,000

8,000

6,000

Exposure Time (hr)

10,000

