

DE-FE0031972 Reversible SOFC-SOEC Stacks Based on Stable Rare-Earth Nickelate Oxygen Electrodes

Dr. John Pietras¹, Dr. Srikanth Gopalan², Dr. Yu Zhong³ Dr. Wenyuan Li⁴, Dr. Whitney Colella⁵

Saint-Gobain
 Boston University
 Worcester Polytechnic Institute
 West Virginia University
 Gaia Energy Research Institute

18 April 2023

SAINT-GOBAIN GROUP

Commitment to achieve carbon neutrality in 2050

Ľ

ABRASIVES & COMPOSITE SYSTEMS

CERAMICS

LIFE SCIENCES CONSTRUCTION INDUSTRY

World or European leader

in most of our businesses

MOBILITY

CERTAINTEED SAGE BUILDING ELECTROCHROMIC MATERIALS GLASS

REVERSIBLE SOFC-SOEC STACKS BASED ON STABLE RARE-EARTH NICKELATE OXYGEN ELECTRODES: DE-FE0031972

Objectives to be reached during this project

- 1. Establish state-of-the-art oxygen electrode materials
- 2. Stabilize Ni-YSZ hydrogen electrode against Ni migration utilize infiltration
- 3. Quantify the effect of cell & stack design on durability then improve it
- 4. Develop and quantify cost-effective and scalable manufacturing

SAINT-GOBAIN

WestVirginiaUniversity.

Completing Budget Period 2

Cropt Drogrom Activity	Budget			
Grant Program Activity	Federal	Non-Federal	Total	
Budget Period 1	\$796,976	\$203,754	\$1,000,730	
Budget Period 2	\$798,961	\$197,689	\$996,650	
Budget Period 3	\$794,730	\$196,226	\$990,956	
Totals	\$2,390,667	\$597,669	\$2,988,336	

Acknowledgement

4

TASKS AND DELIVERABLES

5

Task	Description	Budget Period 1	Budget Period 2	Budget Period 3
1	Project management and planning	 Project Management Plan Technology Maturation Plan Reports as specified 	 Reports as specified 	Technology Maturation PlanReports as specified
2	Oxygen electrode development		 Report detailing reductions in polarization resistance 	
3	Hydrogen electrode reversible durability	 Report detailing improvement in Ni migration 		 Report detailing impact of infiltrants on impurity tolerance
4	Thermodynamic analysis		 Report summarizing compositions to minimize interconnect reactions 	 Report describing optimum performance in both SOEC and SOFC modes
5	Impact of stack architecture on cell stability			 Library of Cr-poisoning to oxygen electrode performance in degradation
6	Scale up to stack production	Button cells delivered	Short stack delivered	
7	Button cell performance and durability testing		 Report detailing improvement in current density of cells Report quantifying compositional and microstructural changes 	 Report summarizing milestones 7.3 and 7.4 on improved degradation rate of cells testing in mode switching
8	Stack testing			 Report quantifying microstructural changes in first gen. stack after mode switching operation Report quantifying improvements over first- generation stack after mode switching
9	Techno-economic analysis			 Report on effect of improvements made on the cost and operation of stack/system

FOCUS ON STACK AND REVERSIBLE OPERATION MODE ISSUES

SOLUTIONS AT EACH LEVEL DESIGNED TO BE PORTABLE TO MANY SYSTEM CONFIGURATIONS

CELL LEVEL MODELING

DETERMINED LOW ENERGY PATH FOR OXYGEN DIFFUSION BY INTERSTITIAL MOVEMENT

distance (A)

Path 2: squeezing through a-b plane

Path 3: bumping along a-c plane

7

CELL LEVEL MODELING

CALCULATED TEMPERATURE DEPENDENT PROPERTIES OF THE NEODYMIUM NICKELATE SYSTEM

Model refinement taking into consideration lattice expansion with increasing temperature

CELL LEVEL MODELING

IONIC CONDUCTIVITY RANKING COMPLETED

Cell Level BOSTON WP ഫി 🛛 UNIVERSITY SAINT-GOBAIN Oxygen Electrode Investigations (Nickelates) Air Electrode Air Electrode Electrolyte Electrolyte Fuel Electrode Fuel Electrode Stack Anode Supported Supported Fuel Electrode Investigations (Nickel migration) **WPI** BOSTON _ഹ്പ് SAINT-GOBAIN

Major result: Ionic Conductivity in $Ln_2NiO_{4-\delta}$ Pr > La > Nd

CELL LEVEL DEVELOPMENTAL WORK

SAINT-GOBAIN

QUANTIFICATION OF NICKEL MIGRATION CHANGE IN NICKEL PERCOLATION CORRELATES WELL WITH CHANGE IN CELL PERFORMANCE

Humidity and Electrochemical Activity Responsible for Change in Ni Connectivity Electrochemical Activity Continues to Drive Microstructure Change After 350 hrs of Operation

Electrochemically

Electrochemically

Active

Oxygen Electrode

YSZ

GDC INFILTRATION EFFECTIVE AT PINNING NICKEL

INFILTRATED STRUCTURE IS MORE STABLE AND SUPPRESSES CHANGE IN RESISTANCE

CHALLENGES OF CELL-TO-CELL CONNECTIONS WITHIN A STACK

EFFECT OF HIGH HUMIDITY ON THE CONDUCTIVITY OF THE CERAMIC INTERCONNECT

Ceramic interconnect being tested with relevant atmospheres and externally imposed current density to simulate fuel cell and electrolysis operational modes

Mode	Gas to air electrode	Gas to fuel electrode	Current density (A/cm2)	Status	Duration
SOFC	18 vol.% O ₂ balanced by N ₂ , 300sccm total	10vol.% humid H_2 , 90sccm H_2 +10sccm steam	0.5	1 st run Finished	~2200 h
SOFC	18 vol.% O ₂ balanced by N ₂ , 300sccm total	10vol.% humid H_2 , 90sccm H_2 +10sccm steam	1	1 st , 2 nd run Finished	~200 h ~600 h
SOEC	40 vol.% O ₂ balanced by N ₂ , 300sccm total	20vol.% humid H_2 , 80sccm H_2 +20sccm steam	-0.5	Finished	1000h
SOEC	40 vol.% O_2 balanced by N_2 , 300sccm total	20vol.% humid H_2 , 80sccm H_2 +20sccm steam	-1	ongoing	~660h
Reversible SOFC-SOEC	Switching gas between SOFC/SOEC mode every 300h	Switching gas between SOFC/SOEC mode	0.5 switch To -0.5	ongoing	~1750h
Reversible SOFC-SOEC	Switching gas between SOFC/SOEC mode every 300h	Switching gas between SOFC/SOEC mode	1 switch to -1		

CHALLENGES OF CELL-TO-CELL CONNECTIONS WITHIN A STACK

SIMULATION OF CERAMIC INTERCONNECT INITIATED TO AID IN MATERIAL EXPLORATION

Simulation of perovskite interconnect A

- Electronic conductivity vs. T
- Electronic conductivity vs. PO2
- Electronic conductivity vs. doping element concentration

Simulate the role of dopants in perovskite interconnect B

• Electronic conductivity of 2-4 doping elements

Supercell Constructed

80-atom SQS structures for CI-A

ENABLING STACK AGNOSTIC VOLUME PRODUCTION

LOW-COST, HIGH-VOLUME POWDER PRODUCTION CRITICAL FOR SOEC/SOFC ADOPTION

SIMULTANEOUSLY CAST MULTILAYER STRUCTURES

ELIMINATES TAPE CASTING INDIVIDUAL LAYERS FOLLOWED BY PUNCHING, STACKING, AND LAMINATION

Benefits

- Higher throughput, economical advantages
- Improved adhesion between layers
- Ultra-thin sub-layers < 30 um (wet) possible

PILOT PRODUCTION OF MULTILAYER STRUCTURES

SIMULTANEOUS MULTI-LAYER WET COATING WITH HIGH QUALITY INTERFACES AND UNIFORM MICROSTRUCTURE

Target Design

Multilayer Wet Coating

Laminated Green Structure

Final Sintered Microstructure

SHORT STACK TESTING STACKS PRODUCED, MANIFOLDED AND SHIPPED TO WVU FOR TESTING

4-cell short stack fit with gaskets

Short stack assembly into gas manifolds

Assembled stack shipped for testing

SUMMARY & NEXT STEPS

BOSTON
UNIVERSITY Image: Constraint of the second second

Key Takeaways

- Completed ionic conductivity calculations from first principles as a function of temperature
- Linked cell degradation to reduction in percolated nickel
- Demonstrated technique to successfully suppress nickel migration
- Began investigation into effect of humidity on electronic conductivity of ceramic interconnect
- Demonstrated use of simultaneous multi-layer casting of ceramic slurries in cells and stacklets
- Begun short stack testing

Next Steps

- Produce powders and test cells with advanced air electrode compositions and optimized PSD
- Fabricate short stack samples with different advanced air electrodes for testing
- Incorporate air electrode compositions into the multilayer casting configuration
- Use model to predict electrical conductivity of perovskites under varying T, pO2, doping elements
- Continue infiltration and operational condition techniques to mitigate Ni migration
- Utilize performance data for system level performance and cost modeling

