

Pressure Driven Oxygen Separation

FWP-73130

Josef Matyáš, David Reed, Jon Helgeland, and **Greg Coffey**

Pacific Northwest National Laboratory Richland, WA

FY23 FECM/NETL Spring R&D Project Review Meeting April 18-20, 2023

PNNL is operated by Battelle for the U.S. Department of Energy

Oxygen Separation Techniques

- Cryogenic Air Separation mature
 - Very high purity (99+)
 - Low energy demand at high capacity (4000 T/day)
 - Energy demand very high at low capacity (i.e., 10-40 T/day)
- Pressure Swing Adsorption (PSA) mature
 - Purity ~ 90 93%
 - Economical at lower capacities (i.e., 300-400 T/day)
- **Polymer Membranes** mature
 - Low purity (~ 40%)

Pressure Driven Oxygen Separation with Ceramic Membranes – R&D

- High purity (99+), ~10 T/day
- Thermal integration
- Can be economical depending on oxygen permeability
- Examples: OTM (Oxygen Transport Membrane)

PRODUCTS 2 ITM (Ion Transport Membrane)

Lind

Background

Project Description and Objectives

The overall goal is to develop a small scale and modular air separation unit providing 10 T/day of high purity oxygen to a 1-5 MW gasifier at low cost and high efficiency

> Planar design with bilayer structure (membrane/support)

 \leftarrow Thin composite membrane (~ 10 µm)

← Porous support (~ 0.5 -1mm)

- > Composite membrane made of mixed conducting two phase material capable of separating oxygen at 700-800°C
- > Utilize the difference in oxygen partial pressure across the membrane to drive oxygen from air (no electrical energy needed for oxygen separation)

Proposed Ceramic Membrane Technology

- Planar design with bilayer structure -

Composite membrane

> Dense

- \succ Two phase composite
 - High σ_i
 - Sufficient σ_{e}
- ➢ Similar TEC
- Limited interaction during firing
- Compatible with glass seal
- Inexpensive fabrication
- \succ No electrodes

Porous Support

- ~ 50% dense
- TEC match to membrane
- Mechanical integrity
- Co-fired w/ membrane

Ionic Conductor • Doped CeO₂

Electronic Conductor Doped LaMnO₃ Doped LaFeO₃

Perovskite

Proposed Ceramic Membrane Technology

Factors Critical for Project Success

- **Low-cost materials** to enable market penetration and maximize energy efficiency
- **Minimize interactions** between ionic and electronic conducting phases
- **Co-sinter thin composite membrane on low-cost porous supports** without warping and cracking
- Design a planar stack architecture with **low-cost fabrication processes**

Proposed Ceramic Membrane Technology

Year 1	Membrane and Support Characterization Bilayer Characterization Membrane Oxygen Permeability $\int \int $
Year 2	Bilayer Interactions Oxygen Permeability Optimization (Barrier layers, Catalysts) Preliminary Stack design
Year 3	Scale up ~ 50 cm ² Cell assembly w/ stainless frames & glass seals Oxygen Permeability Optimization Cost Analysis
Year 4	Scale up/show path to 400 cm ² Cell assembly w/ stainless frames & glass seals Oxygen Permeability Optimization Prototype testing – 50 cm ² Cost Analysis

Project Schedule

Composite Membrane - Microstructure Control/Conductivity -

Ionic Conductor

- Doped CeO₂ $Sm_{Ce}' \rightarrow 2[V_O^{\circ\circ}]$

Electronic Conductor

- Doped LaMnO₃/LaFeO₃
- Acceptor doped p-type

Minimize stress during sintering, hermetically sealed, controlled thermal expansion

- \triangleright Electrical conductivity (σ_e) controlled by perovskite phase, $\sigma_e \sim 4$ orders of magnitude greater than ionic conductivity (σ_i) - σ_i for pure ceria phase ~0.07 S/cm at 800°C and 0.03 S/cm at 700°C
- ~ $2/3 \sigma_i$ value used in composite calculations
- Percolation in both phases

Results

Perovskite

Bilayers with Controlled Microstructures

Tailor the **membrane thickness** by controlling the casting thickness

Dense and thin membrane to maximize the oxygen permeability

Tailor amount of porosity and the size/distribution of pores in the support by controlling the amount and particle size of fugitive phase used in tape cast suspension

Thick and porous support to provide mechanical integrity and • maximize gas diffusion

- Limited interaction during co-sintering
- Match sintering shrinkage

Results

12 µm fugitive phase

1 µm fugitive phase

- Larger grains
- Reduced number of TPBs
- Greater interaction/ diffusion of ions

- Dense Membrane
- Finer grains •
- Increased number of TPBs •
- Less interaction/ diffusion of ions •

Results

Porous Membrane •

- Finest microstructure
- Potentially non-hermetic
- Reduced strength •

Bilayer Microstructures Gd doped CeO₂ w/ $La_{0.75}Sr_{0.2}MnO_3$

Expanded reaction area improves reaction kinetics (O_2 dissociation/recombination)

Results

Bilayer Permeability

Gd doped CeO_2 w/ $La_{0.75}Sr_{0.2}MnO_3$

Results

Bilayer Scale Up and Membrane Composition

 \blacktriangleright Fabricated 3" diameter bilayers that are flat and crack free capable of measuring the O₂ permeability

LSCF/GDC

Membrane

Membrane – additional composition

- Sr and Co doped LaFeO₃ (LSCF) and GDC LSCF/GDC ۲
- Lower densification temperature (1150°C) than LSM/GDC (1300-1325°C)
- LSCF has mixed conductivity and higher catalytic activity than LSM
- LSCF has a higher thermal expansion than LSM
- Under development

Sintered at 1150°C Porous barrier layer, dense membrane \rightarrow O₂ permeability test in progress

Results

•

•

Catalyst Nanoparticle Infiltration

CeO_2 – lower heat treatment temp

Catalyst Optimization

Catalyst Composition

Doped CeO₂

LaCoO₃ based

- Concentration and size/distribution of particles
- Coverage
- Deposition technique
- Heat treatment temperature
- Fabrication Temp
- LSM and LSCF based

Catalyst $\leftrightarrow O_2$ Permeability Relations

CeO_2 – higher heat treatment temp

3 Cell Demonstration Stack Build

Pacific Northwest

- Membrane/Cell Active area = $56 \text{ cm}^2 (7.5 \text{ cm } x 7.5 \text{ cm})$
- Barium aluminosilicate-based glass seal
- Stainless frames and corrugated supports

• Simple design

0

- Equipment limitations
- Single point for system failure
- System downtime

- Improved reliability
- Higher capital costs?
- Equipment options

Techno Economic Analysis

Pacific Northwest

lanuractu	ire stacks (de	pena on p	ermeabilit	y)						100 cm2		material + labor	400 cm2
-	Cassette		60/40				8ft	8ft		cell dimensions		100 cells	
•	Membran			E microns)	\$/kg	doncity	50 g batch		¢/coll	4" x 4" fired (100cm2)		100 cens	(400 cm2)
		Material of		GDC	,, kg 1200		50 g batch 5 30 g		0.75				(400 CI112)
	_	Wateriart	.0515	LSM	1200				0.75				
				LSCF	1200		5 20 5		0.5				
				solvent/bind/etc	65		25		0.033854				
				solvent/ bind/etc	05		25	48 cells	1.283854	1.283854167	,	128.3854167	513.5416667
	_	Labor		96" length	botching	miving or	descting		3hr @\$30/h			90	135
	_	Laboi		50 Teligin	Datching,	mixing, ar	iu castilig		511 @\$50/1			50	15.
	_		60/40				32ft	32ft		cell dimensions			
	Barrier lav			LSCF (5 microns)	\$/kg	density	50 g batch		\$/cell	4" x 4" fired (100cm2)			
	Danieriay			GDC	1200		50 g baten 5 12 g		0.1875	4 X4 med (100cm2)			
				LSM	1200				0.1875				
				LSCF			-		0.125				
	_				1200				0.000464				
	_			solvent/bind/etc	65		25		0.008464				
				carbon	200		30		0.03125				
									0.320964	0.641927083	8	64.19270833	256.7708333
		Labor		96" length	batching,	mixing, ar	nd casting		4hr @\$30/h	r		120	180
					\$/kg		16 ft (15 m						
	support M	gO		\$17.40/lb (450 g)				\$/24 cells		4" x 4" fired (100cm2)			
				MgO	38		200g	7.6	0.316667	0.316666667	7	31.66666667	126.6666667
		Labor		96" length	batching,	mixing, ar	nd casting		3hr @\$30/h	r		90	135
					\$/kg	amount	\$/cell						
	glass seal			glass	100	1g/cell	0.1					\$114.14	\$456.54
				solvent/bind/etc		3g/cell	0.195					19.5	78
		Labor							1hr @\$30/h	r		30	45
									1				
						100 cells							
	Laminatin	g. laser cut	t and sinte	r	laminate	laser cut				4" x 4" fired (100cm2)			
		5,		BL/mem/BL/support	1 hr	1 hr	1 hr		1hr @\$30/h			90	135
	_				250		1500 W		2			50	100
			\$0.1 /kW/h	electricity costs (\$/hr)	2.5							20	30
			<i>ç</i> 0.1 <i>)</i>		2.0		. 13					20	
	assembly	lahor - gla	ss sealing			100 cells				4" x 4" fired (100cm2)			
	ussenisty	abor gra	Jobeaning		robotic di		0.5hr	100 W		- x - mea (1000m2)			
	_		\$0.1 /k/M/h	electricity costs (\$/hr)	TODOLIC UI	spenser	1					1	1.5
							1					1	1
	assembly	labor wo	Iding			100 cells				4" x 4" fired (100cm2)			
	assembly	labor - we	luing		fully outo					4 x 4 med (100cm2)			
	_				fully auto 3000W	mated							
	_		CO 1 /1-14/1-									30	40
	_		ŞU.1/KVVN	electricity costs (\$/hr)	30							30	45
	Picture fra	me (430 S	5) + alumin			100 cells				4" x 4" fired (100cm2)			
				purchase roll 400 series w/ Al2O3			\$50,000/x	cells				100	400
	Cassette					100 cells				4" x 4" fired (100cm2)			
					fully auto	mated							
					3000W								
			\$0.1/kWh	electricity costs (\$/hr)	30							30	45
	Material 8	labor cos	ts - 100 cell	l stack								958.88	2583.02
	equipmen	t costs inc	luding dep	riciation								57.14285714	57.14285714
						1					total	1219.228259	3168.198752
	Yield (80 %	6)											
		,										100 cell stack	100 cell stack
	custom	et 10 etc -	ke (build:-	g stack including equipment)								100 cen stack	400 cm2
	system co	5r - 10 SIGC	va (nanan	g stack meruumg equipment)									
	-						-		-		-	1219	3168
							-					1	
												~1200	~3200

Co cel cel

Cost to manufacture 100 cell stack at different cell dimensions

Techno Economic Analysis

Techno Economic Analysis/System Cost

Pacific

Northwest

- Stack cost as a f(cell dimension) material, labor, equipment, yield, etc.
- System cost capital costs, # of stacks, depreciation, etc.
- Oxygen Cost largely dependent on stack costs/oxygen permeability

Tornado plot showing sensitivity of various items to the overall oxygen production cost

 \succ The case of 10 circuits with 80 stacks is the center line at \$50/Ton of O₂

- If the number of circuits decreases to 5 by various methods, the O_2 cost would drop to \$29/Ton.
- Several items are connected and would have a cumulative effect on the overall cost. They will be constantly evaluated as the project continues.
- The initial evaluation shows that the cost is competitive with other available O_2 production technologies.

•

0

Next Steps – Year 4

Fiscal Year	ID	Description	Date			
4	M 1	Submit Tech Maturation Plan (TMP).				
4	M2	Perform single cell tests on a 50 cm^2 cell with aluminized frames and glass seals.	7/31/2023			
4	M3	Perform cost analysis based on optimized oxygen permeability.	10/31/2023			
4	M4	Construct system capable of testing cells and stacks with areas of 50 cm^2 to 400 cm^2 .	10/31/2023			
4	M5	Demonstrate ability to sinter larger area bilayers, i.e. 200 and 400 cm ² .	1/31/2024			
4	M6	Demonstrate a 5-10 cell stack based on either LSM or LSCF membranes using 50 cm^2 cells with aluminized frames and glass seals.	1/31/2024			

Project Accomplishments

- Reduced sintering temperature during co-firing to reduce interactions (both LSM and LSCF based)
- Good membrane conductivity significant oxygen flux can be achieved in composites for designing an economic modular oxygen separation unit
- Thermal expansion match between all components (composite membrane, composite support, glassceramic seal, 400 series stainless steel frame)
- Inexpensive materials of construction, ability to scale using traditional inexpensive thick film techniques
- Good mechanical strength/flexibility in porous support
- Ability to fabricate very thin dense membrane (10-15 μ m) on flat, crack free porous supports
- Ability to control tape cast composite microstructures with controlled properties
- Modular system approach with improved reliability
- The initial techno economic analysis shows that the cost is competitive with other available O_2 production technologies.

Acknowledgements

PNNL Staff wish to thank Evelyn Lopez, David Lyons, and Jai-Woh Kim from DOE Office of Fossil Energy for their support of this project.

Extra slides

0

Technology Maturation Plan

- Critical Questions from TMP Template
- Technology TRL
- Steps for Commercialization

23

Critical Questions

- What is required for integration into higher-level systems?
- What is the critical decision point at moving the technology from a laboratory project to a *larger-scale pilot project?*

Demonstrate a 50 cm² stack composed of aluminized stainless frames that are sealed to cells using a glass seals (i.e., 5-10 cell stack). Testing performance of the stack will dramatically reduce risk in scaling up the process and enhance potential commercialization with industrial partners. In addition, the ability to sinter bilayers structures up to 200 cm² and 400 cm² would also significantly reduce scale up risks.

- What performance metrics are most important for technical and economic success (at component and system levels)?
- Identify R&D gaps and critical components that are lagging in maturity?

Continue oxygen permeability optimization on LSM and LSCF based membranes. Attaining a high oxygen permeability will enable less stacks to be used, and therefore improve reliability and costs of the system.

Critical Questions

How can one improve the balance of the project to mitigate risks and increase the likelihood lacksquareof R&D success?

A single system with one large vacuum pump, heat exchanger, blower and in-line heater would be simpler to design, but a modular approach would dramatically improve reliability by eliminating a single point failure mechanism.

Modular approach will improve reliability by increasing redundancy Reduce probability of system failure (i.e. ceramic components)

Critical Questions

What does the forecast of the cost and duration of technology development look like through demonstration and commercialization?

Techno Economic Analysis/System Cost

- Stack cost as a f(cell dimension) material, labor, equipment, yield, etc.
- System cost capital costs, # of stacks, depreciation, etc.
- Oxygen Cost largely dependent on stack costs/oxygen permeability

	LSM Based	LSM Based	LSCF Based*	
	(barriers & catalyst)	(barriers & catalyst)	(barriers & cataly	
	60/40	70/30		
O ₂ Permeability (mol/cm ² ·s)	4.0 x 10 ⁻⁸	1.2 x 10 ⁻⁷	$4.0 \ge 10^{-7}$	
# Stacks				
400 cm ²	205	68	20	
Oxygen Cost (\$/T)	62-86	49-74	45-70	

Operating cost – and compare to existing technologies

Technology Maturation Plan

Beginning Technology Readiness Level (TRL) (Pre-Project Award – 01/2018)

• TRL 1 – White paper study that provided details on how to drive oxygen through an oxygen conducting ceramic without an electric potential. Details provided a potential technology that would provide oxygen on a ton/day level that would operate at elevated temperatures with a chemical potential as the driving force.

Proposed Research to Mature the TRA System (Year 1-3)

• TRL 2-4 Experimental work started to verify material phase, purity, and compatibility with other components. Preliminary oxygen permeability experiments started with some material interactions observed. Verified that individual components meet specifications needed for the system, very thin membranes on porous support structures are need to have the appropriate oxygen flux for the mixed conducting membrane. Preliminary integration of components (membrane, support, glass seals, stainless frames) will be performed on 50 cm² bilayer structures. Initial economic analysis

Technology Maturation Plan

Proposed Research to Mature the TRA System (Year 4)

TRL 4-5 The focus will move from testing components to a system which integrates all components into an operating system. Components will be integrated sealed into an operating stack such that the system will be similar to the final design. The dimension will be smaller that the final design but will provide insight into operation of the system. Potential IP developed on operating system. Provide economic analysis refinement based on Year 4 results.

Post Year 4

- TRL 6 Prototype construction, demonstration, and cost validation (commercialization partner – SOFC, SOEC developers, industrial gas suppliers, ceramic manufacturers)
- TRL7-9 Full scale demonstration and qualification