# EERC. UN NORTH DAKOTA.

Energy & Environmental Research Center (EERC)

### SUBTASK 5.1 – SOLID OXIDE FUEL CELL DEVELOPMENT AND DEMONSTRATION TEST CENTER

Zhien Liu, Principal Scientist, Solid Oxide Fuel Cell Development FY23 FECM Spring R&D Project Review Tuesday, April 18, 2023

# **ACKNOWLEDGMENTS AND DOE DISCLAIMER**

#### Acknowledgments:

- Special thanks to U.S. Department of Energy (DOE) Project Managers Shailesh Vora, Patcharin (Rin) Burke, and the entire SOFC program management team.
- This material is based upon work supported by DOE NETL (National Energy Technology Laboratory) under Award No. DE-FE0024233-5.1.

#### **Disclaimer:**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

## **Activity Breakdown**

- Subactivity 2.1 Project Management and Reporting
- Subactivity 2.2 –SOFC Testing
- Subactivity 2.3 Development of Protocols for Accelerated Stress Tests (ASTs)
- Subactivity 2.4 Coordination with SOFC Manufacturers/Developers



## **Project Schedule**

#### • M4 – Complete SOFC Performance Test

| 1      | Activity 2: Sept, 2022 - Jan 31, 2024                                         |     |     | 2022 |     |     | 2023 |     |     |     |     |     |     |     | 2024 |     |     |
|--------|-------------------------------------------------------------------------------|-----|-----|------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|
|        | Tasks                                                                         | Oct | Nov | Dec  | Jan | Feb | Mar  | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov  | Dec | Jan |
| Task 1 | 2.1 Project Management through 1/31/2024                                      |     |     |      | D1  |     |      | D1  |     |     | D1  |     |     | D1  |      |     | D2  |
|        | 2.2.1 SOFC performance and durability assessment using alternative fuels      |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
|        | 1) Coordination with SOFC suppliers                                           |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
|        | 2) Parametric & durability test using ammonia                                 |     |     |      |     |     |      |     |     | M4  |     |     |     |     |      |     |     |
|        | 3) Understand degradation mechanism & develop mitigation approaches           |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
|        | 4) Parametric & durability test using renewable natural gas (RNG)/bio-syngas  |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
|        | 5) Postmortem analysis                                                        |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
| Task 2 | 2.2.2 Proton conducting electrolyte and SOFC development                      |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
|        | 1) Conductivity and stability evaluation of electrolyte.                      |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
|        | 2) Cathode and anode materials development                                    |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
|        | 3) Button cells testing & materials optimization                              |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
|        | 2.2.3 Establish the capability of SOFC processing                             |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
|        | 1) Cell processing lab and equipment readiness                                |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
|        | 2) Prepare button cells to meet the development need of 2.2.1 and 2.2.2       |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
| Task 3 | 2.3 Development of protocols for accelerated stress tests                     |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
|        | Select accelerated stress tests, design test matrix, generate test procedures |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |
| Task 4 | 2.4 Coordination with SOFC and SOFC Component Manufacturers/Developers)       |     |     |      |     |     |      |     |     |     |     |     |     |     |      |     |     |

# Task 2.2 SOFC Testing – Technical Approaches

# 2.2.1 SOFC Performance and Durability Assessment Using Alternative Fuels

- Use commercially available SOFC cells.
- Using H<sub>2</sub>/pipeline natural gas/coal-derived syngas as baseline.
- SOFC cell performance and durability using alternative fuels are comparable to baseline data.
- Understand degradation mechanism and generate mitigation approach.
- Potential risk using ammonia fuel.
  - Nitride formation on anode
  - NO<sub>x</sub> formation
- Renewable natural gas.
  - Produced from feedstocks including animal waste, crops and crop residue, vegetable and food waste.
- Bio-syngas.
  - H<sub>2</sub>–CO mixture produced by biomass gasification



# Task 2.2 SOFC Testing – Technical Approaches

#### 2.2.2 SOFC Optimization of Proton-Conducting Electrolyte

- Characterization of proton-conducting electrolyte
  - Thermal expansion coefficient (CTE)
  - XRD for crystalline phase
  - Chemistry
  - Material densification vs. sintering temperatures
- Conductivity testing of proton-conducting electrolyte under low and high pO<sub>2</sub>
  - Conductivity vs. temperature
  - Stability vs. moisture, pO<sub>2</sub>
  - Chemical expansion
- Chemical compatibility with cathode and anode materials
  - Calcine powder mixture at sintering temperature
  - XRD characterization for third phase
- Button cell processing optimization and testing
  - Fabricate button cells to meet electrochemical testing need
  - Test button cells in SOFC or SOEC mode to meet performance target

EERC. UND NORTH DAKOTA

# Task 2.2 SOFC Testing – Technical Approaches

#### **2.2.3 Capability of SOFC Development**

SOFC Cell Processing High temperature furnaces

- Screen printer
- Three-roll mill for ink development
- Dryer with forced air
- Viscometer
- **Optical microscope**
- Ball mill for slurry preparation







Electron Microscope

OM Image System





**Three-Roll Mill** 



Screen Printer



**XRF** 



XRD with Hot Stage and Data Analysis System

# **Updated Capability of SOFC Testing Lab**

- Addition of syngas contaminants to fuel gas stream
- Multiple contaminants simultaneously





EERC.

# **Control System for Syngas Contaminant Addition**

0

- Completed • hardware/plumbing and control system.
- Able to add up to four kinds of syngas contaminants to fuel stream.
- Contaminants can be • changed via calibrated gas bottle.
- Accurate MFCs to add • as low as 50 ppb contaminant.

NORTH DAKOTA.

Safety protection. •

MFC Blend CTRL Log Flows Hidden STOP Communication NPORT Address: 192.168.7.254 MFC 1 LoopCount VISA resource name 1 Wink1 Error 1 OFF COM2 -MFC 2 VISA resource name 2 Wink 2 Error 2 OFF COM4 -MFC 3 VISA resource name 3 Wink 3 Error 3 OF COM5 -MEC 4 VISA resource name 4 Wink 4 Frror 4 COM6 -Contaminant Flow Measured Values SP Read 1 M1 Units 1 0.000 0.000 SP Read 2 M 2 Units 2 0.000 0.000 SP Read 3 M 3 Units 3 0.000 0.000 M 4 SP Read 4 Units 4 0.000 0.000 Procedure for Zeroing MFC's: 1) SP = 0... 2) Press micro-switch and hold down until the red light turns on and then off 3) At this point the green light turns on. Immediately release button and wait at least 10 seconds for the reading to stabilize.

| MFC | Blend CTRL                                                                                                                                                                                                          | Log Flows Hidden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|     | Contaminant Blending Inputs<br>These Inputs Select the Flows used in the Blending Calculations. These Setpoints are NOT input to<br>the MFC's of the Blending Panel. Use Existing Blending Panel for Low-Flow MFCs. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                     | Flow Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                     | No Flow     Construction     High SG Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                     | Syngas Flow Total Flow Air Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                     | Syngas Howrate         Interview         Number of the second seco |  |  |  |  |  |  |  |  |
|     | These In<br>Used to C<br>Flow                                                                                                                                                                                       | puts Select the Target Blending Concentrations Required in the Mixture. These Values are<br>Calculate the Flowrate Setpoints. These Setpoints ARE input to the MFC's for Contaminants<br>/ Control but no Flow is Started. Any Combination of the 4 Components is Allowable.<br>Concentration Select<br>No Contaminants<br>Level 1 Contaminants<br>Level 2 Contaminants<br>Level 3 Contaminants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|     | н                                                                                                                                                                                                                   | CI Conc PH3 Conc AsH3 Conc H2S Conc<br>Off  T Off  Off  Off  Off  Off  Off  Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                     | 0.000         ppm         PH3         0.000         ppm         AsH3         0.000         ppm         H25         0.000         ppm           0.000         sccm         sccm         sccm         sccm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                     | LOAD SPs Freezes Inputs. Values can not be Changed Until Test is<br>Completed or the Stop Button is Pressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|     | Ac                                                                                                                                                                                                                  | Load SPs Data Transfered<br>Low_SG Air_1 Low_N2<br>:tual Flows: 0.00 sccm 0.00 sccm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|     | The<br>Setpo                                                                                                                                                                                                        | START FLOWS Button will be Enabled when LOAD SPs button Transfers Calculated<br>ints for Contaminant MFCs AND when Air, N2, and Syngas MFC Measured Flows are<br>> 90% of their Respective Setpoints.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|     | Actual Flo                                                                                                                                                                                                          | Start Flows         Stop Flows           HCI         PH3         AsH3         H2S           ows:         0.000         sccm         0.000         sccm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |

### **SOFC Testing** – Literature Review for NH<sub>3</sub>-Reforming Catalyst

| Ni-Based Ammonia-Reforming Catalysts                    |                       |                                |                    |                      |                                           |  |  |  |  |  |  |
|---------------------------------------------------------|-----------------------|--------------------------------|--------------------|----------------------|-------------------------------------------|--|--|--|--|--|--|
| Catalyst                                                | Metal Content,<br>wt% | Support Materials              | Temperature,<br>°C | $NH_3$ Conversion, % | References                                |  |  |  |  |  |  |
| Ni <sub>0.5</sub> Ce <sub>0.1</sub> Al <sub>0.4</sub> O |                       |                                | 500                | 88                   | J. Phys. Chem. C 2016, 120, 7685          |  |  |  |  |  |  |
| Ni                                                      |                       | Al <sub>2</sub> O <sub>3</sub> | 600                | 97                   | Ind. Eng. Chem. Res. 2000, 39,<br>3694    |  |  |  |  |  |  |
| Ni                                                      | 10                    | Al <sub>2</sub> O <sub>3</sub> | 500                | 93                   | Appl. Catal., A 2012, 447-448, 22.        |  |  |  |  |  |  |
| Ni                                                      | 90                    | Al <sub>2</sub> O <sub>3</sub> | 600                | 93                   | J. Mater. Chem. A 2015, 3, 17172          |  |  |  |  |  |  |
| Ni                                                      | 38.6                  | Attapulgite                    | 650                | 90                   | Int. J. Hydrogen Energy 2016, 41, 21157   |  |  |  |  |  |  |
| Ni                                                      | 40                    | BaZrO <sub>3</sub>             | 550                | 94                   | RSC Adv. 2018, 8, 32102                   |  |  |  |  |  |  |
| Ni                                                      | 13.2                  | $Ce_{0.8}Zr_{0.2}O_2$          | 550                | 96                   | Int. J. Hydrogen Energy 2012, 37, 15901   |  |  |  |  |  |  |
| Ni                                                      | 40                    | GdAlO <sub>3</sub>             | 550                | 81                   | RSC Adv. 2018, 8, 32102                   |  |  |  |  |  |  |
| Ni                                                      | 6                     | MgO                            | 650                | 88                   | Ind. Eng. Chem. Res. 2000, 39,<br>3694    |  |  |  |  |  |  |
| Ni                                                      | 23.4                  | SBA-15                         | 550                | 89                   | Appl. Catal., A 2008, 337, 138            |  |  |  |  |  |  |
| Ni                                                      | 5.2                   | Sepiolite                      | 550                | 82                   | Int. J. Hydrogen Energy 2018, 43,<br>9954 |  |  |  |  |  |  |
| Ni                                                      | 40                    | SmAlO <sub>3</sub>             | 550                | 81                   | RSC Adv. 2018, 8, 32102                   |  |  |  |  |  |  |
| Ni                                                      | 40                    | SrTiO <sub>3</sub>             | 550                | 80                   | RSC Adv. 2018, 8, 32102                   |  |  |  |  |  |  |
| Ni                                                      | 40                    | SrZrO <sub>3</sub>             | 550                | 90                   | RSC Adv. 2018, 8, 32102                   |  |  |  |  |  |  |
| Ni                                                      | 5                     | ZSM-5                          | 650                | 98                   | Appl. Catal., A 2018, 562, 49             |  |  |  |  |  |  |

### **SOFC Testing** – Literature Review for NH<sub>3</sub>-Reforming Catalyst

| Ru-Based Ammonia-Reforming Catalysts |                    |                                  |                    |                      |                                                  |  |  |  |  |  |
|--------------------------------------|--------------------|----------------------------------|--------------------|----------------------|--------------------------------------------------|--|--|--|--|--|
| Catalyst                             | Metal Content, wt% | Support Materials                | Temperature,<br>°C | NH₃ Conversion,<br>% | References                                       |  |  |  |  |  |
| Ru                                   | 2.5                | SiC                              | 400                | 99.3                 | J. Ind. Eng. Chem. 2021, 94, 326                 |  |  |  |  |  |
| Ru                                   | 5.0                | Cu/LaTiO₂N                       | 450                | 97.3                 | Applied Catalysis B: Environmental 2004, 48, 237 |  |  |  |  |  |
| Ru                                   | 5.0                | Graphitic carbon (GC)            | 550                | 95.0                 | Appl. Catal., A. 2007, 320, 166                  |  |  |  |  |  |
| Ru                                   | 11.7               | Graphene Aerogel                 | 450                | 97.6                 | Appl. Catal., A. 2021, 610, 117969               |  |  |  |  |  |
| Ru                                   | 5.0                | Cr <sub>2</sub> O <sub>3</sub>   | 600                | 100.0                | Appl. Catal., A. 2013, 467, 246                  |  |  |  |  |  |
| Ru                                   | 4.8                | La <sub>2</sub> O <sub>3</sub>   | 525                | 90.7                 | Appl. Surf. Sci. 2019, 476, 928                  |  |  |  |  |  |
| CoMo                                 | 5.0                | Al <sub>2</sub> O <sub>3</sub>   | 600                | 99.5                 | Int. J. Hydrogen Energy. 2014, 39, 12490         |  |  |  |  |  |
| Ru                                   | 0.7                | LaAl <sub>2</sub> O <sub>3</sub> | 450                | 99.0                 | J. Membr. Sci., 2020, 614, 118483                |  |  |  |  |  |
| Cs-Ru                                | 0.4                | YSZ                              | 450                | 99.0                 | ACS Sustainable Chem. Eng. 2019, 7, 5975         |  |  |  |  |  |
| Ru                                   | 2.0                | Al <sub>2</sub> O <sub>3</sub>   | 450                | 99.0                 | Fuel Process. Technol., 2021, 216, 106772        |  |  |  |  |  |
| Ru-Y-K                               | 3.0                | Al <sub>2</sub> O <sub>3</sub>   | 450                | 99.0                 | J. Membr. Sci., 2021, 629, 119281                |  |  |  |  |  |
| Ru                                   | 1.9                | YSZ                              | 450                | 99.0                 | J. Membr. Sci., 2022, 644, 120147                |  |  |  |  |  |
| Ru                                   | 1.0                | YSZ                              | 450                | 99.0                 | J. Membr. Sci., 2022, 644, 120147                |  |  |  |  |  |
| Ru                                   |                    | SiO <sub>2</sub>                 | 500                | 96.0                 | Catal. Today 2011, 164, 112                      |  |  |  |  |  |
| Ru                                   | 2.0                | Al <sub>2</sub> O <sub>3</sub>   | 500                | 98.0                 | Appl. Catal., A 2012, 447–448, 22                |  |  |  |  |  |
| Ru                                   | 8.5                | Al <sub>2</sub> O <sub>3</sub>   | 400                | 99.0                 | Int. J. Hydrogen Energy 2014, 39, 808            |  |  |  |  |  |
| Ru                                   | 4.0                | Al <sub>2</sub> O <sub>3</sub>   | 400                | 95.0                 | Top. Catal. 2008, 50, 180                        |  |  |  |  |  |
| Ru                                   |                    | С                                | 400                | 90.0                 | Int. J. Hydrogen Energy 2013, 38, 3233           |  |  |  |  |  |
| Ru                                   | 5.0                | CNTs                             | 500                | 88.0                 | J. Catal. 2004, 224, 384                         |  |  |  |  |  |
| Ru                                   | 5.0                | GC                               | 550                | 95.0                 | Appl. Catal., A 2007, 320, 166                   |  |  |  |  |  |
| Ru                                   |                    | Graphene                         | 450                | 91.0                 | Catalysts 2017, 7, 1                             |  |  |  |  |  |
| Ru                                   | 2.0                | Graphene                         | 600                | 93.0                 | J. Am. Chem. Soc. 2013, 135, 3458                |  |  |  |  |  |
| <b>UN</b> N N                        | UN NORTH DAKOTA    |                                  |                    |                      |                                                  |  |  |  |  |  |



# **SOFC Testing – Preliminary NH<sub>3</sub>-Reforming Test**

#### **Test Setup**

- Tube furnace
- Fuel injection tube inside of quartz tube
  - NH<sub>3</sub> passed through injection tube
  - Gas samples collected at outlet



Furnace with Quartz Tube





- TC101-TC104: TCs attached with injection tube
- TC105-TC108: TCs attached with quartz tube

# SOFC Testing – NH<sub>3</sub> Decomposition from 450°–750°C

- Performed in a tubular furnace with fuel injection tube.
- Inline LGA used for exhaust gas analysis.
- NH<sub>3</sub> concentration is "estimated" by the difference of 100% and LGA data.

| Test Performed<br>on | T, °C | % CO | % O <sub>2</sub> | % H <sub>2</sub> S | % N <sub>2</sub> | % H <sub>2</sub> | % CO <sub>2</sub> | Total | Est. %<br>NH <sub>3</sub> |
|----------------------|-------|------|------------------|--------------------|------------------|------------------|-------------------|-------|---------------------------|
| 1/11/2023            | 450   | 0    | 1                | 0                  | 12               | 2                | 0                 | 100   | 85                        |
| 1/11/2023            | 500   | 0    | 1                | 0                  | 13               | 4                | 0                 | 100   | 82                        |
| 1/11/2023            | 600   | 0    | 0                | 0                  | 17               | 19               | 0                 | 100   | 63                        |
| 1/11 &<br>1/19/2023  | 650   | 0    | 0                | 0                  | 21               | 36               | 0                 | 100   | 42                        |
| 1/19/2023            | 675   | 0    | 0                | 0                  | 24               | 47               | 0                 | 100   | 29                        |
| 1/19/2023            | 700   | 0    | 0                | 0                  | 27               | 56               | 0                 | 100   | 17                        |
| 1/11/2023            | 750   | 0    | 0                | 0                  | 31               | 70               | 0                 | 101   | -1                        |

EERC. UND NORTH DAKOTA

### **SOFC Testing – Cell Performance with Different Fuel Compositions**

#### Three tests

- Test 1: system shakedown
- Test 2: H<sub>2</sub> and reformed NH<sub>3</sub>
- Test 3: modified setup
- Temperature 675°C
- H<sub>2</sub> test
  - Fuel flow: 200 sccm
  - Airflow: 400 sccm
- Reformed NH<sub>3</sub> Test
  - Fuel Flow: 200 sccm
    - ◆ NH<sub>3</sub>: 29%
    - ♦ H<sub>2</sub>: 47%
    - ◆ N<sub>2</sub>: 24%
  - Airflow 400 sccm

**UND NORTH DAKOTA**.



Cell V/I and P/I Curves with H<sub>2</sub> and Reformed NH<sub>3</sub> Fuel

# **SOFC** Development

- EERC selected proton-conducting electrolyte for technology development.
- State-of-the-art SOFC/SOEC is based on commercially available oxygen ionconducting YSZ/ScSZ electrolyte.
- Operating at high temperatures.
- Higher BOP cost.
- Higher degradation rate for SOEC.

- Lower activation energy and higher conductivity at low temperatures.
- Enable low-temperature operation.
- Lower BOP cost.
- Improve thermally activated degradation mechanisms.
- Potentially longer service life.
- Phosphate-based material was selected (CUP).



### **CUP** Powder and Disk Preparation – Phase Stability



NORTH DAKOTA

- CUP was synthesized as amorphous phase at high temperatures.
- Amorphous phase crystallized to orthorhombic phase during cooling.
- Crystals were ball-milled into CUP powder for PCE.
- CUP disks were prepared by isostatic pressing for property characterization evaluation.

### **Conductivity of CUP Electrolyte Disk**

- Conductivity of CUP electrolyte disk was measured using EIS in H<sub>2</sub> gas with moisture.
  - Steady increase in proton conductivity, possibly related to the interaction of CUP with steam.
- Maximum conductivity of 0.0227 S/cm was achieved at 225°C, then showing steady degradation.
  - $\circ~$  Performed XRD characterization after conductivity test.



**Testing Setup** 





Proton Conductivity Versus Time for Sintered CUP Disk

### **CUP** Disk Stability – Before and After Testing

- XRD spectra of C-PCE disks before and after conductivity testing at 225° and 300°C, respectively.
- Noticeable phase change.



# **CUP** Disk Densification and Improvement

- SEM examination indicates about 10% porosity for sintered CUP electrolyte disk.
- Mitigation approaches to improve densification of CUP disk:
  - Sintering aid
    - Cobalt oxide (CoO)
    - Ternary glass: P<sub>2</sub>O<sub>5</sub>-CaO-Na<sub>2</sub>O (PCN): conductivity of 2.7x10<sup>-4</sup> S/cm
  - Powder-milling study to reduce particle size
  - Sintering profile optimization



CUP Disk Cross-Section with CoO Sintering Aid

### **CUP Powder-Milling Study for Improved Densification**

One Milling Cycle





Four Milling Cycles









### **Tape-Casting Trial of CUP Green Tape**

- CUP green tape can be made via tape-casting approach, tape thickness in the range of 120–280 μm.
- CUP powder with optimized milling cycle will be used for future tape-casting.



500 μm 1000 μm First Casting Trial

500 µm 1000 µm Second Casting Trial

Fired CUP Tape

**Doctor Blade Opening** 

EERC. UND NORTH DAKOTA.

### **Development of Protocols for Accelerated Stress Tests**

- Completed literature review.
- Design principles of accelerated testing methodology for SOFC.
- AST methodology for SOFC anode material evaluation.
- AST methodology for both cathode and anode materials evaluation.
  - AST elevated operating temperature
  - AST high current density and low pO<sub>2</sub>
  - AST load cycle effect
- AST accelerated cathode degradation by moisture.



# Summary

- SOFC supplier was selected for SOFC testing using alternate fuel.
- Generated initial SOFC performance data using anode-supported cell and ammonia as fuel.
- Completed  $NH_3$  decomposition tests from 450 ° to 750°C.
  - Full conversion of  $NH_3$  to  $H_2$  at 750°C.
  - Catalytic NH<sub>3</sub> conversion may be required low-temperature SOFC.
- Synthesized CUP powder and measured proton conductivity at 200°–300°C, showing steady degradation in 100-hr duration test.
- CUP shows stable phase during processing and phase change during conductivity testing.
- Conducted milling study to reduce particle size of CUP powder and improve densification.
- Initial tape-casting trial is promising for CUP green tape fabrication.



### **Next Step**

#### **Alternative Fuels Testing**

- Continue durability test using NH<sub>3</sub> fuel to identify potential degradation mechanism, and develop mitigation approach.
- Select supplier for renewable natural gas and initiate SOFC performance testing.

#### **Proton-Conducting Electrolyte**

- Understand the effect of milling cycles/PSD on CUP electrolyte processing and densification.
- Optimize CUP tape-casting and sintering profile to obtain low-porosity and high conductivity of ≥0.02 S/cm electrolyte at 200°–300°C.
- Better understand CUP electrolyte chemical stability and mechanical property at relevant conditions.
- Prepare P-SOFC button cell for electrochemical testing and meet performance target.



# EERC. UN NORTH DAKOTA.

Chad Wocken 701.777.5273 (phone) cwocken@undeerc.org

Zhien Liu 701.777.5476 (phone) zliu@undeerc.org Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5000 (phone)

