

Development and Characteristics of Densified Biomass-plastic Blend for Entrained Flow Gasification

Jameson Hunter, Dimitrios Koumoulis, Heather Nikolic,
Jian Shi and Kunlei Liu
IDEA
University of Kentucky
Lexington, KY
(DE-FE0032043)

Overall Goal

Develop and study a biomass-plastic fuel that is suitable for oxygen blown entrained flow cogasification with carbon-negative emissions

5% torrefied wood added to coal-water slurry increased the viscosity beyond the limits of slurry pump

Our Approach

Densified biomass with less water uptake

Material	Bulk Density (kg/m³	Heating Value (Btu/lb)	Heating Value (GJ/m)	BET Surface Area (m²/g)	Porosity (%)	Pore Volume. (cm³/g)	Average Pore Size (nm)
IL #6 Coal	670-920 ⁵	11,666-13,125 ⁶	28-31	<297		<0.0189	$0.6 - 1^6$
Torrefied Pine Wood	150-350 ¹⁰	9,203-10,3405	18-20	>4012 13	~6512	$\sim \! 0.1^{14}$	30-100 ¹⁴
Steam Exploded Pine Wood	40-200 ¹⁵ 16	8,000- 9,800 ¹⁷ ¹⁸	3-14	65-130 ¹⁹	~8018	0.3-1.1 ²⁰	500- 1000 ²¹

Project Execution

Project Schedule and Cost

Budget Period 1								
FY2021		FY20	FY2022		FY2023		Total	
DOE Funds	Cost Share	DOE Funds	Cost Share	DOE Funds	Cost Share	DOE Funds	Cost Share	
\$31,030	\$26,597	\$257,136	\$70,130	\$211,834	\$28,832	\$500,000	\$125,559	
54%	46%	79%	21%	88%	12%	80%	20%	

Lab-scale Proof of Concept Studies

HDPE powder

Pellet Bulk Density

Sample	Component Size (inch)	Component Blend Plastic:Biomass (HHV Basis)	Bulk Density (g/cm ³)
Plastic Mix	1/8		1.45
Biomass	~1.5		0.15-0.35
HDPE/Biomass	1/8	15:85	0.88
PET/Biomass	1/8	15:85	0.95
Plastic/Biomass	1/8	30:70	0.96
Plastic/Biomass	1/8	50:50	0.96
Plastic/Biomass	1/8	70:30	1.23
HDPE/Biomass	1/16	15:85	0.81
PET/Biomass	1/16	15:85	0.90
Plastic/Biomass	1/16	30:70	0.91
Plastic/Biomass	1/16	50:50	1.01
Plastic/Biomass	1/16	70:30	1.15

Densities increase with addition of plastic

7

Hydrophobic Surface

Water droplet contact angle measurements

	Component	Component Blend	Contact
Sample	Size	Plastic:Biomass	Angle
	(inch)	(HHV Basis)	(°)
Plastic Mix	1/8		131.3
HDPE/biomass	1/8	15:85	89.0
PET/biomass	1/8	15:85	109.2
Plastic/biomass	1/8	30:70	98.0
plastic/biomass	1/8	50:50	106.7
Plastic/biomass	1/8	70:30	112.3
HDPE/biomass	1/16	15:85	94.4
PET/biomass	1/16	15:85	99.7
Plastic/biomass	1/16	30:70	110.4
plastic/biomass	1/16	50:50	108.3
Plastic/biomass	1/16	70:30	109.6

Most blends of biomass and plastic have contact angles greater than 90° to signify hydrophobicity

Water Uptake

Less than 10% in mass for the plastic blends after 8 hours of submersion

	Component	Component Blend	Water Upt	take (wt %	6, Based	on Mass o	of Biomass)
Sample	Size	Plastic:Biomass		Imm	ersion Ti	me (h)	
	(inch)	(HHV Basis)	2	4	6	8	24
Plastic Mix	1/8	100:0	1.2	1.8	2.2	2.3	3
Biomass	1/8	0:100	113	115	120	125	148
HDPE/Biomass	1/8	15:85	2.7	5.0	4.7	4.9	5.5
PET/Biomass	1/8	15:85	-	-	-	-	-
HDPE/Biomass	1/16	15:85	1.0	3.0	2.3	3.6	9.1
PET/Biomass	1/16	15:85	4.9	5.8	5.5	6.5	8.1

The addition of plastic to the biomass significantly reduces the amount of water uptake

Surface Chemistry

The addition of plastic reduces the area of the peak associated with hydroxyl groups

Solid Fuel Characterization

Heating value and ash composition

Sample	BTU/Lb	%Ash	%Carbon	%Volatile Matter	%Fixed Carbon
HDPE:TW 1:4	9604	1.14	53.91	72.58	20.15
Coal	11487	11.59	66.48	36.69	48.4

Biomass-plastic blend has a heating value close to coal and significantly lower ash and fixed carbon.

wood (1:4 ratio)

Large Quantity Production - Plastic Biomass Co-extrusion

The bulk of material for the 1 TPD gasification will be produced by the Polymers Center in Charlotte, NC

Slurry Characterization

Goal: Lower viscosity than coal-water slurry at similar weight percents

Anton-Paar GmbH Rheometer

Inclusion of plastic biomass blend decreased the viscosity of the slurry with a higher solid wt%

Blended Fuel Kinetics

Thermogravimetric Analysis

Biomass and plastic have two distinct thermal decomposition points. These are maintained when blended. Altering the gas environment during decomposition causes slight shifts in these peaks.

Bench Scale Gasification

Drop tube furnace

Blended fuel is dropped into the reactor at 1100 °C Gas environments include increasing concentrations of water vapor in mostly nitrogen.

The Moisture on Gasification

An optimal gas environmental: 15% Water vapor produces the most CO and H₂ with less CO₂ production than 20% water vapor

FactSage Simulation

Slag composition

70% Coal & 30% HDPE1TW4 Gasification

Co-gasification of coal and biomass-plastic blend produce two distinct slags

Ash fusion temperature using two different methods

Fuel	FT (Aijun Dai)	FT (Vincent)
Coal	1229.97 °C	1257.46 °C
BFNC	1213.18 °C	1275.88 °C

FactSage Simulation

Slag viscosity

Watt et al. model for the "high-T slag viscosity prediction"

Yin et al. model for the "Ash Softening Temperature (AST) prediction"

Pilot Scale Gasification

1 TPD entrained flow gasifier

Testing of co-gasification of coal and the biomass-plastic blend will be conducted later this year

Milestones and Success Criteria

Task	Milestone	Completion Date
1.1	PMP Updated	7/14/21
3.0	Densified biomass produced with at least 20% improvement of hydrophobicity and density	12/17/21
4.0	Plastic encapsulated biomass demonstrated	12/17/21
5.0	Acceptable Coal/biomass/plastic Solid Fuel Slurry Demonstrated	2/22/22
6.0	Solid Fuel Characterization Complete	11/15/22
8.0	Completion of Gasification Kinetic Studies	
10.2	> 600 kg blended solid fuel prepared	
10.3	Gasification Complete on the 1 TPD Entrained Flow Gasifier	
1	Final Project Report Complete	

Comple- tion Date	Success Criterion
3/31/22	Demonstration of blended solid fuel slurry with 60 wt% solids and comparable heat
3/31/22	value to 100 % coal water slurry.
2.0	Collection of gasification kinetic data and identification of preliminary operating
	conditions.
	Demonstrated gasification of the blended solid fuel in the UK CAER entrained flow
	gasifier with dataset detailing optimum operating conditions and characterization of
	slag phase formation and solidification.

Acknowledgements

U.S. DOE-NETL
Andrew C. O'Connell

University of Kentucky
Pengfei He, Otto Hoffmann, Ryan Kalinoski, Hanjing Tian,
Ahamad Ullah

Wabash Valley Resources, LLC
Dan Williams, Rory Chambers, Brad Stone

