Capabilities Development at The University of Texas at El Paso for Hydrogen Generation Research and Education

Award No: DE - FE0032201

PI: Nawshad Arslan Islam, Ph.D.

Research Associate Aerospace Center, University of Texas at El Paso

Co PI: Ahsan Choudhuri, Ph.D.

Associate Vice President Aerospace Center, University of Texas at El Paso

Co PI: Joel Quintana, Ph.D.

Assistant Professor Aerospace and Mechanical Engineering Department University of Texas at El Paso

OUTLINE

- Project Information
- Project Objectives
- Project Team
- Project Progress
- Publications
- Timeline
- Milestone Log
- Budget
- · Success Criteria
- Deliverables

PROJECT INFORMATION

Project Title: Capabilities Development at The University of Texas at El Paso for Hydrogen Generation Research and Education

Award No: DE – FE0032201

Investigators: Dr. Nawshad Arslan Islam, Email: mislam12@utep.edu, Phone: 915-747-6199

Dr. Ahsan Choudhuri, Email: ahsan@utep.edu, Phone: 915-747-6905 Dr. Joel Quintana, Email: jquintana@utep.edu, Phone: 915-747-8981

DOE Project Manager: Maria Reidpath, Email: maria.Reidpath@netl.doe.gov, Phone: 304-285-4140

UTEP Business Contact: Raul Chavez, Email: rchavez13@utep.edu, Phone: 915-747-5680

Period of Performance: 01/01/2023 – 12/31/2023

Project Amount: \$200,000

UTEP Research Centers: Aerospace Center (formerly NASA MIRO Center for Space Exploration and Technology Research)

PROJECT OBJECTIVES

The overarching goal of this project is to assess the R&D capability of the Aerospace Center at UTEP to develop a sustainable Hydrogen research facility

Objective 1: Analysis of the current state-of-the-art MSW gasification systems and capability assessment of the UTEP Aerospace Center

- Task 1.1: The gasification system: state-of-the-art review and technology gap analysis
- Task 1.2: Concept Development
- Task 1.3: UTEP Aerospace Center's Capability Assessment

Objective 2: Planning of hydrogen production research facility and future hydrogen research capabilities

- Task 2.1: Mapping of Hydrogen Research
- Task 2.2: Determination of Required Equipment, Cost Analysis and Procurement Plan
- Task 2.3: Developing Partnership and Outreach Efforts

Objective 3: Student training and education in hydrogen research and gasifier

- Task 3.1: Student Training in the Gasifier Systems
- Task 3.2: Student Training in Gasifier Process Simulation
- Task 3.3: Hydrogen power generation and energy systems course development

PROJECT TEAM

PI & Co-PIs

Nawshad Arslan Islam, Ph.D. Principal Investigator Research Associate, Aerospace Center, UTEP

Ahsan Choudhuri, Ph.D. Co – Principal Investigator Associate Vice President, Aerospace Center, UTEP

Joel Quintana, Ph.D.
Co – Principal Investigator
Assistant Professor, Aerospace &
Mechanical Engineering, UTEP

Aerospace Center Staff Support

Luz BugarinDirector of Operations

Gloria Salas Director of Business Operations

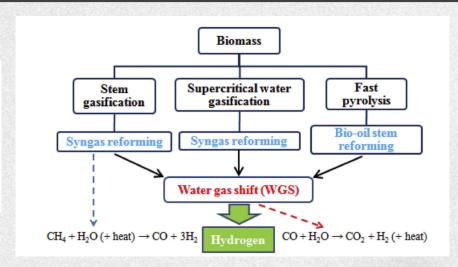
Mehrin Chowdhury, Ph.D.Student Success Manager

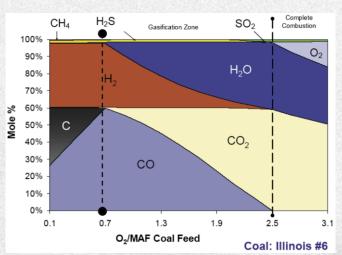
Ariful Ahsan, Ph.D.Project Manager

Student Team

Sumit ChandaPh.D. Research Assistant

Anika Farhat Tasnim MS/Ph.D. Research Assistant

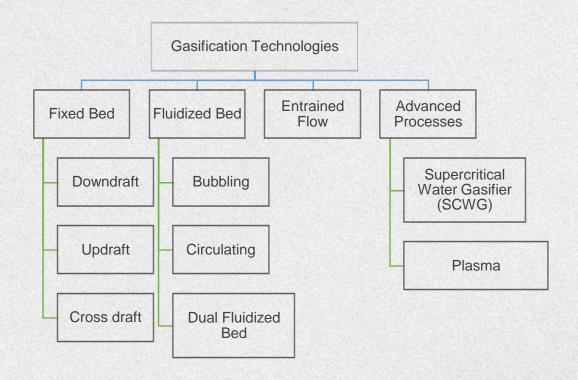

Daniel ReyesUndergraduate Research Assistant

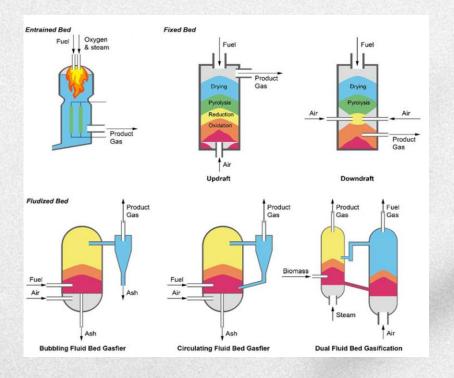


Luis Alvarado Mendoza Undergraduate Research Assistant

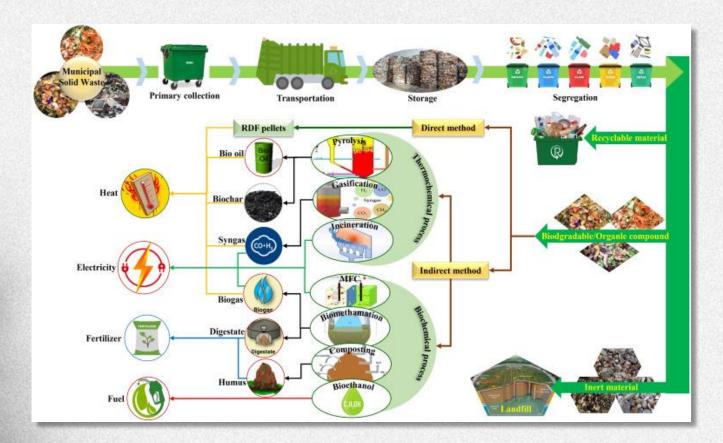
Task 1.1: State of the Art Gasification System Review

Nos.	Reaction name	Reaction chemistry	ΔH (MJ/kmol)
R1	Boudouard	$C + CO_2 \leftrightarrow 2CO$	172.5
R2	Water gas	$C + H_2O \leftrightarrow CO + H_2$	131.3
R3	Dry reforming	$CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$	247.0
R4	Water gas shift	$CO + H_2O \leftrightarrow H_2 + CO_2$	-41.1
R5	CO methanation	$CO + 3H_2 \leftrightarrow CH_4 + H_2O$	-205.8
R6	CO ₂ methanation	$CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O$	-165.0
R7	Combustion	$C + \frac{1}{2}O_2 \rightarrow CO$	-110.5





A complex process in which combustible materials are partially oxidized or partially combusted to produce Syngas (CO, CH₄, H₂)


The process operates in an oxygen-lean environment Gasification feeds - Coal, Biomass, Plastic, Municipal Solid Waste (MSW), Sludge Gasifying medium - Air, Oxygen, CO₂, Steam

Task 1.1: State of the Art Gasification System Review

Task 1.1: State of the Art Gasification System Review

Feedstocks

Biomass and MSW can be a potential options to produce H₂ from sustainable resources

Advantages of using sustainable resources -

Biomass is proven to carbon negative

MSW gasification recovers waste energy

Better option compared to landfill or incineration

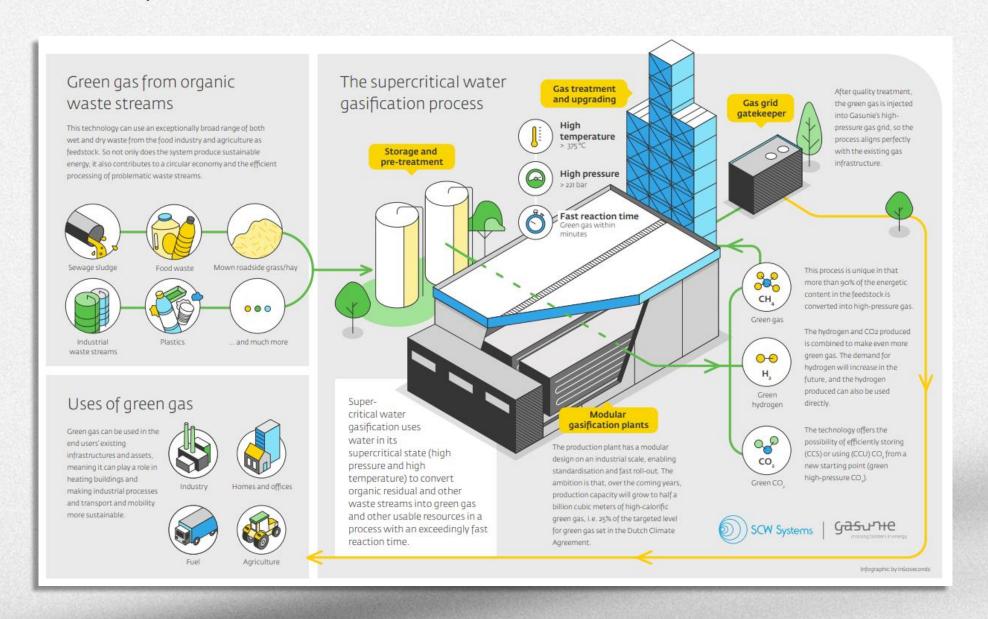
Co-gasification of Biomass and MSW can potentially be carbon

neutral

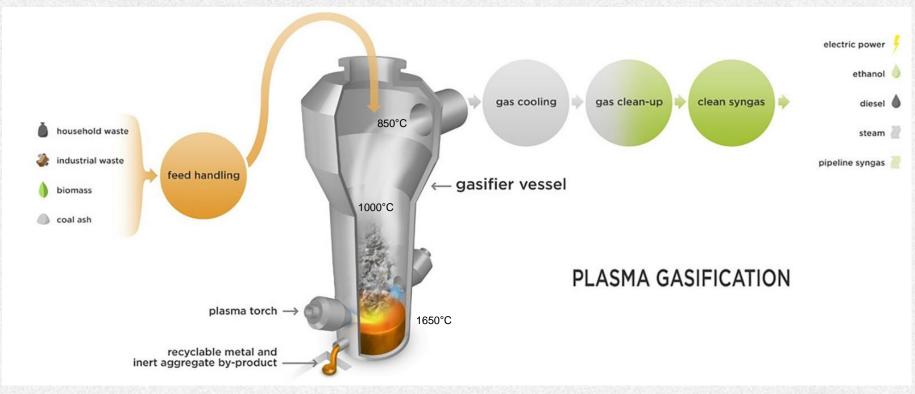
Can improve the Hydrogen production cost

Application

Fuel-Cell H₂


Sustainable Aviation fuel

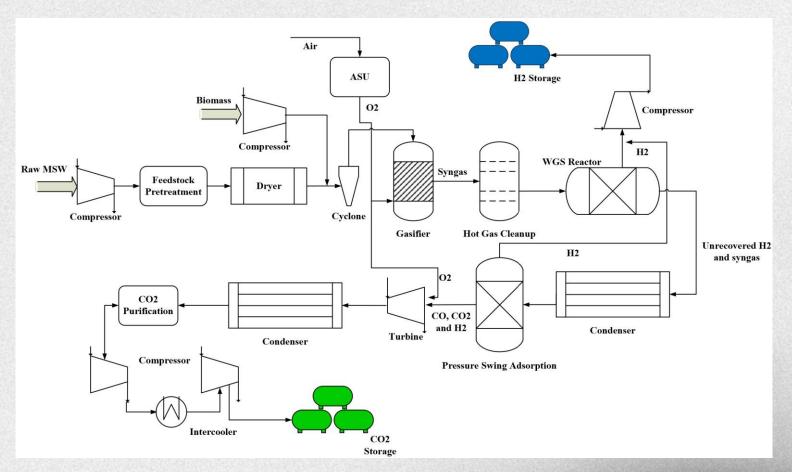
Transportation fuel (Marine, Rail, off-road, agricultural, vehicle)

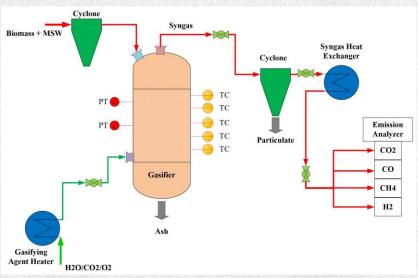

Powerplant

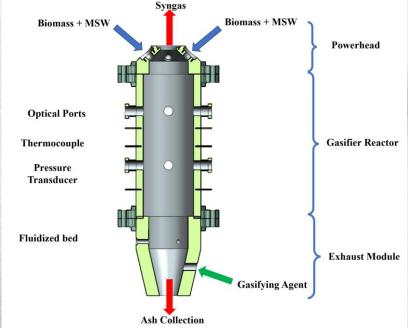
High-value products

Task 1.1: State of the Art Gasification System Review

Task 1.1: State of the Art Gasification System Review


Task 1.1: State of the Art Gasification System Review





Task 1.2: Concept Development

High Pressure (≥ 10 bar) Co-Gasification of MSW and Biomass

University of Texas at El Paso (UTEP)

America's Leading Hispanic Serving University

- A R1 university with 24000+ students in 170 Undergraduate and graduate level over 10 colleges
- 84% Hispanic Ethnicity
- Over \$115M in research expenditure

Task 1.3: Capability Assessment of UTEP Aerospace Center

AEROSPACE CENTER

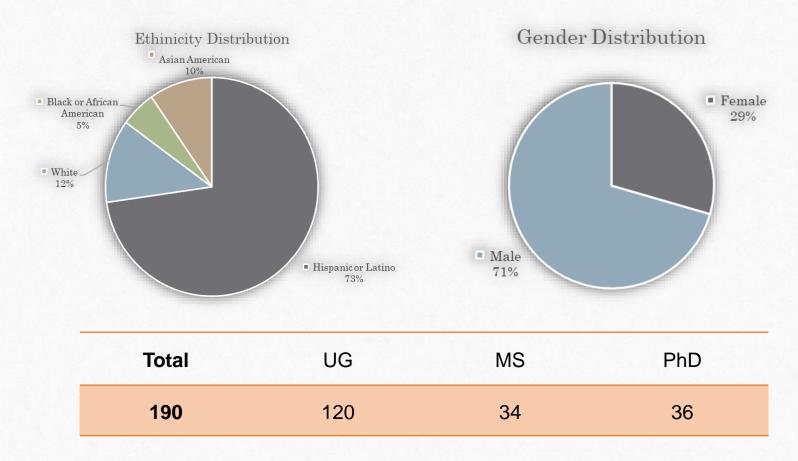
Center of Excellence in Aerospace and **Defense Systems Research**

Aerospace Center has an expansive strategic partnership with NASA and Aerospace and Defense Industries to educate a diverse future aerospace and defense workforce.

Task 1.3: Capability Assessment of UTEP Aerospace Center

Aerospace Center/cSETR

Space Research Division supports NASA's Artemis program and Moon to Mars vision by focusing on strategic capabilities in propulsion and robotic lander, lunar surface exploration, and small spacecraft technologies.


Aeronautics and Defense Division supports the research and development of hypersonic, missile, and unmanned aerial systems technologies. Aeronautics and Defense Division aspires to support the US Space Force's Space Superiority domain through innovation in Space Domain Awareness and Space Access & Sustainment.

Energy and Sustainability Engineering Division provides capabilities in sub-pilot scale to commercial scale fossil, nuclear, and renewable energy technology development; prototype to commercial product demonstration as well as test and evaluation.

Economic Development and Workforce Excellence Division supports the development of an advanced and technology-based industrial economy for El Paso and West Texas and an integrated workforce with all skill spectrum for small and medium high-tech business expansion.

Task 1.3: Capability Assessment of UTEP Aerospace Center

In the 2019-2020 academic year alone, Lockheed Martin Corporation hired 101 of our students, 66 full time and 35 intern/co-op.

AEROSPACE CENTER AT A GLANCE

Facilities

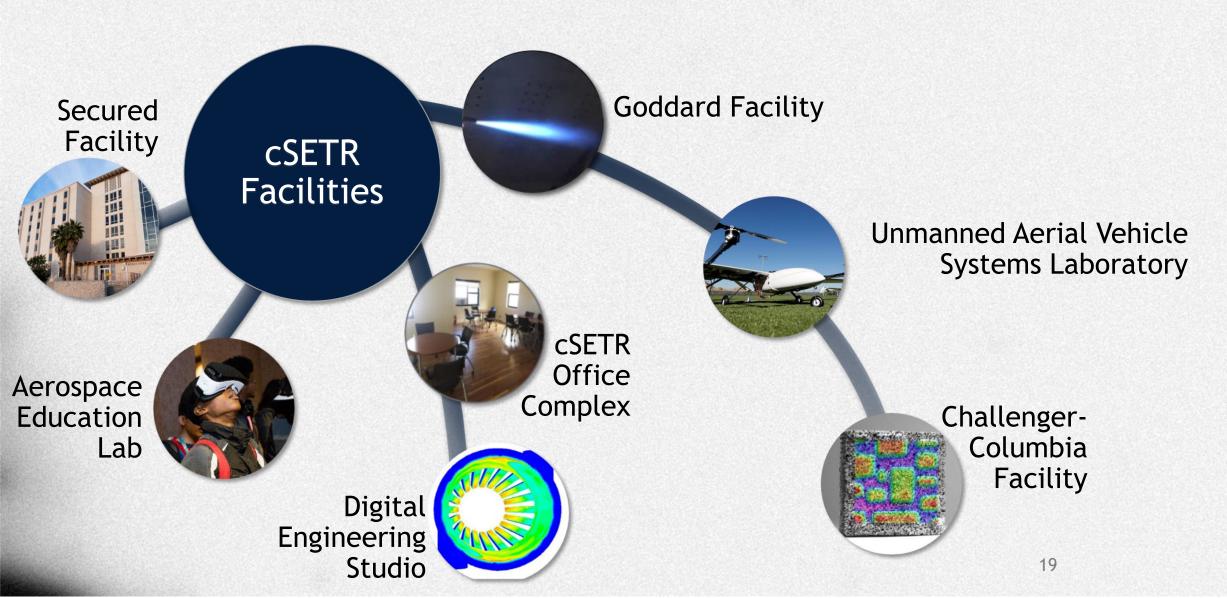
University Campus Facilities | 17,915 sq. ft.

Goddard's Combustion & Propulsion Research Facility
Includes ultra-high velocity projectile resistance bunker
Challenger-Columbia Structures & Materials Research Facility
Digital Engineering Facility
Generative Design Laboratory
Sensitive Compartmented Information Facility (SCIF)

Off Campus Facilities

Technology Research & Innovation Acceleration Park | Fabens, TX

- General Aviation Airport | 4200 ft. & 2300 ft. Runways | 400 acres
- •HQ Site | Propulsion and Energy Systems Integration Facility | 10,200 sq. ft.
- •Alpha Site | Propulsion and Large-Scale Testing Facility | 18 Acres + 600 Acres
- •Aeronautics Research & Learning Facility (Planned) | 10,000 sq. ft.


Bravo Site: Tornillo Unmanned Aerial System Flight Test Range | Tornillo, TX | 600 acres

- •400 ft. Runways | Test Support Facility
- •LSTAR Radar | 100 KW Power Trailer

Spacecraft Design and Engineering Facility | Francis St, El Paso, TX | 8,840 sq. ft.

- •Including | Satellite Ground Station | 2.4 m S-b& antenna | 436 MHz UHF antenna
- •(9) Training Rooms, (10) Office Spaces, & Student Collaborative Space

Current On-Campus Facilities

tRIAc - Alpha Site

- Research & Development
- Control Center
- •Test Cells
- Vertical Test Stand

Fabens, TX

tRIAc - HQ Site

- Design studio & Manufacturing Workshop
- Fabrication and Integration Shop
- •Collaboration Common: Graduate, Undergraduate, & K-12

Fabens, TX

Tornillo Unmanned Aerial System Flight Test Range

- •20-25 acres facility + Flight Test Range (600 acres)
- •400-ft Runway
- Test Support Facility (planned)

Fabens, TX

tRIAc - Aeronautics Research and Learning Facility (Planned)

- Flight Wind-Tunnel Research and Education Complex
- Subsonic Wind Tunnel
- Water Tunnel Supersonic Tunnel

Fabens, TX

Fabens General Aviation Airport

- Partner Facility
- Managed by El Paso County
- •4,200 ft. & 2,300 ft. Runways
- •400 acres

Fabens, TX

Francis Facility

- Spacecraft Development Facility
- Satellite Ground Station (underdevelopment)
- •2.4 m S-band antenna | 436 MHz UHF antenna

El Paso, TX

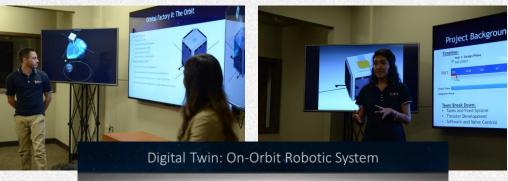
Horizon City Aerospace and Defense Accelerator

- Partner Facility
- Horizon City Economic Development Corporation
- Small Business Incubator

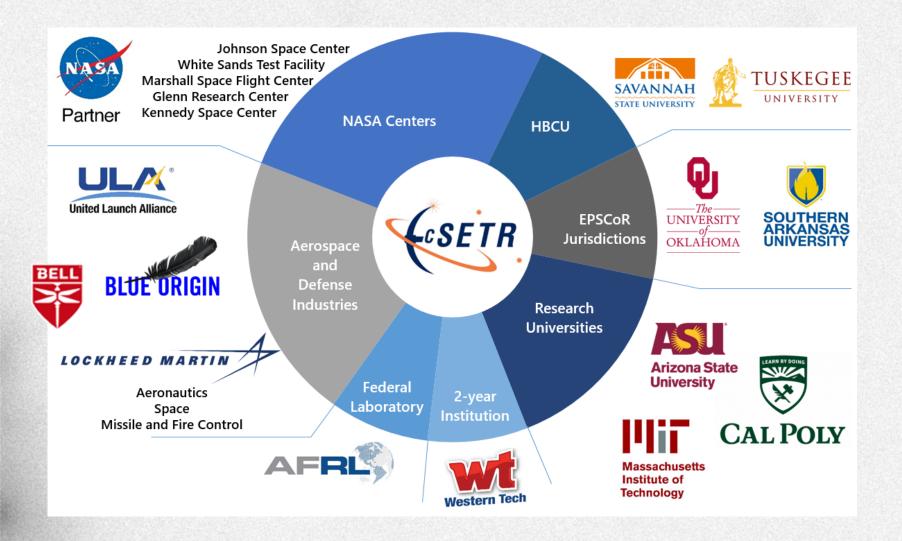
Horizon, TX

TMD Defense and Space

- Partner Facility
- •Administrative Area & 21,000 sf warehouse, Hazardous Material Assembly Area with (10) Missile Assembly Cells & (7) Storage Magazines & Firefighting Support Building


Horizon, TX

DEDC: Digital Engineering Aerospace and Defense Design Centers



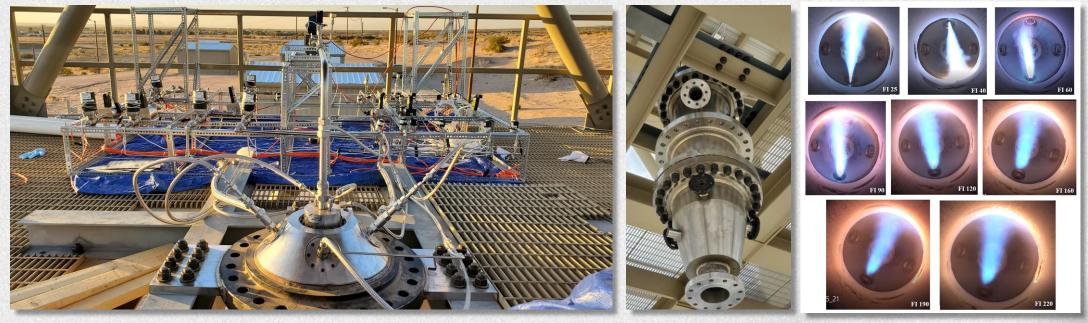
STRATEGIC PARTNERS

New Digital Engineering Alliance

Build Back Better - Phase 2

Advanced Manufacturing Campus

- 250 acre campus
- Master planned to co-locate aerospace, defense and advanced manufacturing
- Potential to minimize business expense through shared infrastructure
- Manufacturers can choose to locate their operations in a shared facilities or in single operator, designed-to-suit facilities

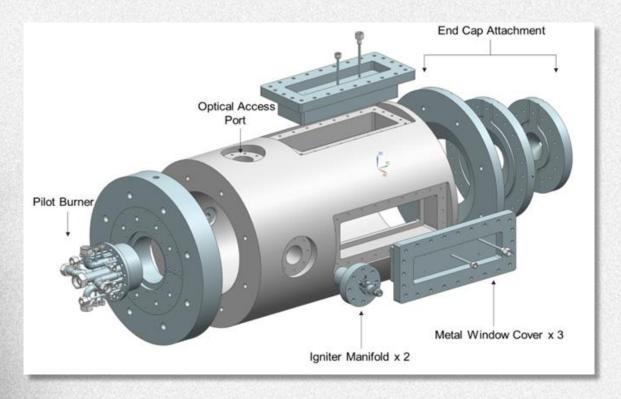


TECH ONE CAMPUS

UTEP AEROSPACE CENTER

AEROSPACE CENTER ENERGY RESEARCH PORTFOLIO

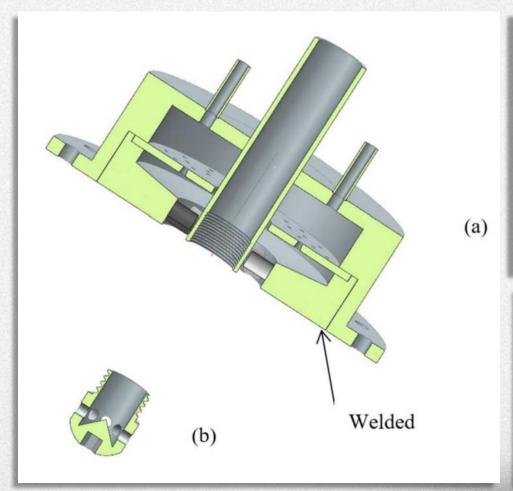
Swirl Flex Fuel Combustor

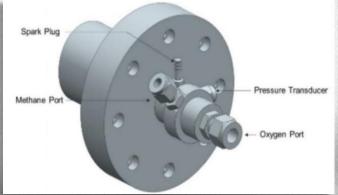


Up to 5 MW_{th} capacity Modular design Fuel flexible – Hydrogen, Syngas, Methane, Coal, Biomass, solid/fluid fuel-blends Operating pressures up to 20 bar

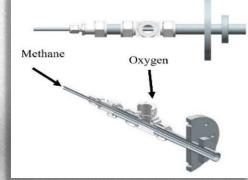
AEROSPACE CENTER ENERGY RESEARCH PORTFOLIO

Intermediate Pressure Turbine Combustor


Up to 1 MW_{th} capacity High operating pressure - up to 200 bar Fuel flexible – Hydrogen, Syngas, Methane High volume CO₂/RFG recirculation



AEROSPACE CENTER ENERGY RESEARCH PORTFOLIO


Legacy Burner Systems

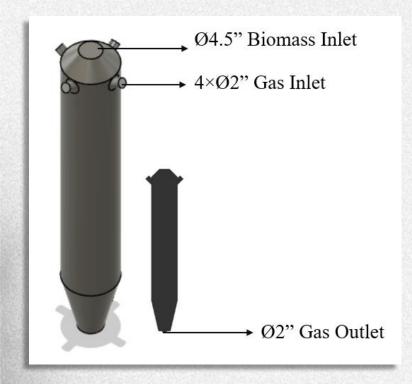
Task 2.1,2.2,2.3 (to be completed after completion of Task 1.3)

OBJECTIVE 2

Planning of hydrogen production research facility and future hydrogen research capabilities

2.1 Hydrogen Research Map

- Multi year Research Plan
- Potential funding source
- SME, Faculty and Student Roles


2.2 Required Resources

- Modification and use of existing resource
- New equipment and SME requirements
- Potential collaborations

2.3 Partnership and Outreach

- Community & local government partnerships
- K-12 outreach
- National labs and Industry collaborations

PROJECT PROGRESS Task 3.1 & 3.3

Task 3.1: Student Training in the Gasifier Systems

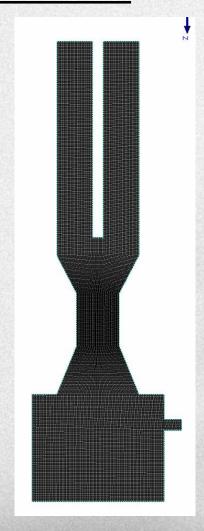
Hydrogen seminars to expose students to gasification technologies

Planned during Summer 2023 and Fall 2023

Implemented CAD training to develop design competency

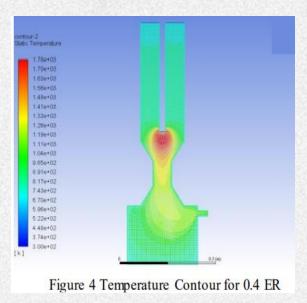
Task 3.3: Hydrogen Power Generation & Energy Systems Course Development

Course development underway


Course to be offered during Fall 2023 by the UTEP Aerospace and Mechanical Engineering Department

Task 3.2: Student Training in Gasifier Process Simulation

	Model	Settings	Information
	Space	2D	-
	Time	Steady	-
Models	Viscous	Standard k-epsilon Turbulence model	Turbulence intensity = 10%
Settings	Wall Treatment	Standard Wall Functions	-
	Specie Transport	Enabled	-
	Discrete Phase	Surface Injection	-


	Name	Type	Information
	Fluid	Fluid	$Air(21\%O_2)$
	Outlet-	Exhaust	
Boundary	syngas	Fan	1
condition	Inlet	Mass	0.00477 kg/s
Condition	Air	flow inlet	0.004// Kg/S
	Wood	Mass	0.001944
	inlet	flow inlet	kg/s
	Wall	Insulated	No-slip

Model Mesh

Task 3.2: Student Training in Gasifier Process Simulation

Model

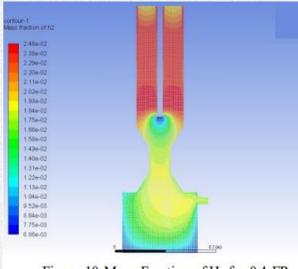


Figure 10 Mass Fraction of H₂ for 0.4 ER

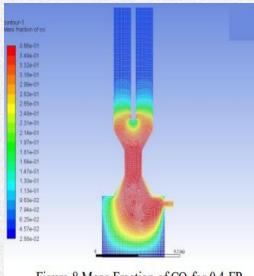
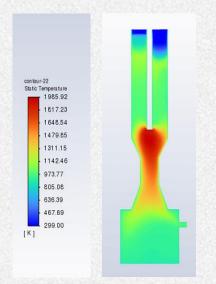
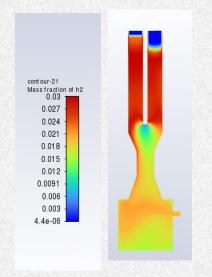
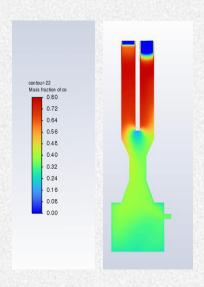
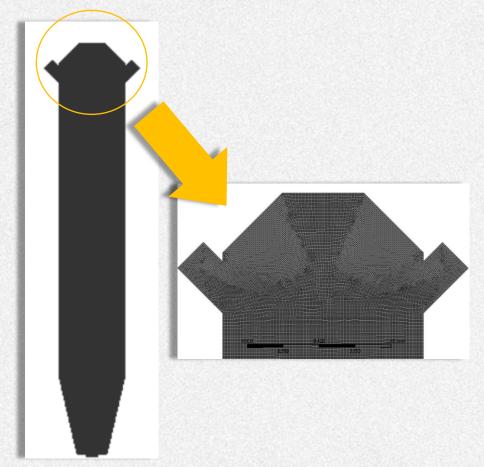
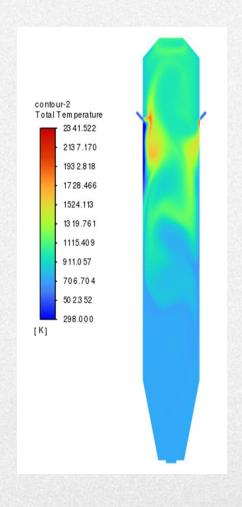
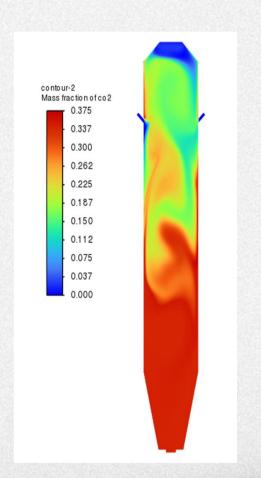





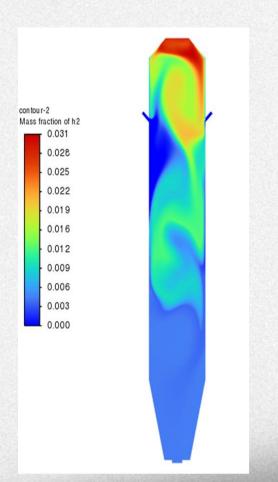
Figure 8 Mass Fraction of CO for 0.4 ER

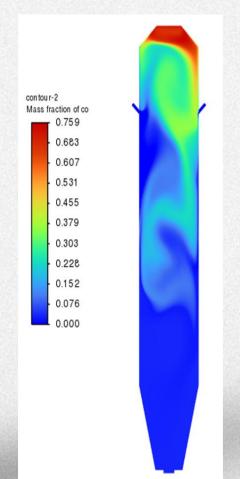
Paper

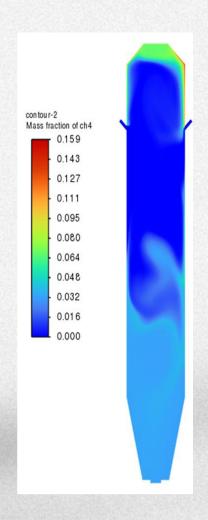


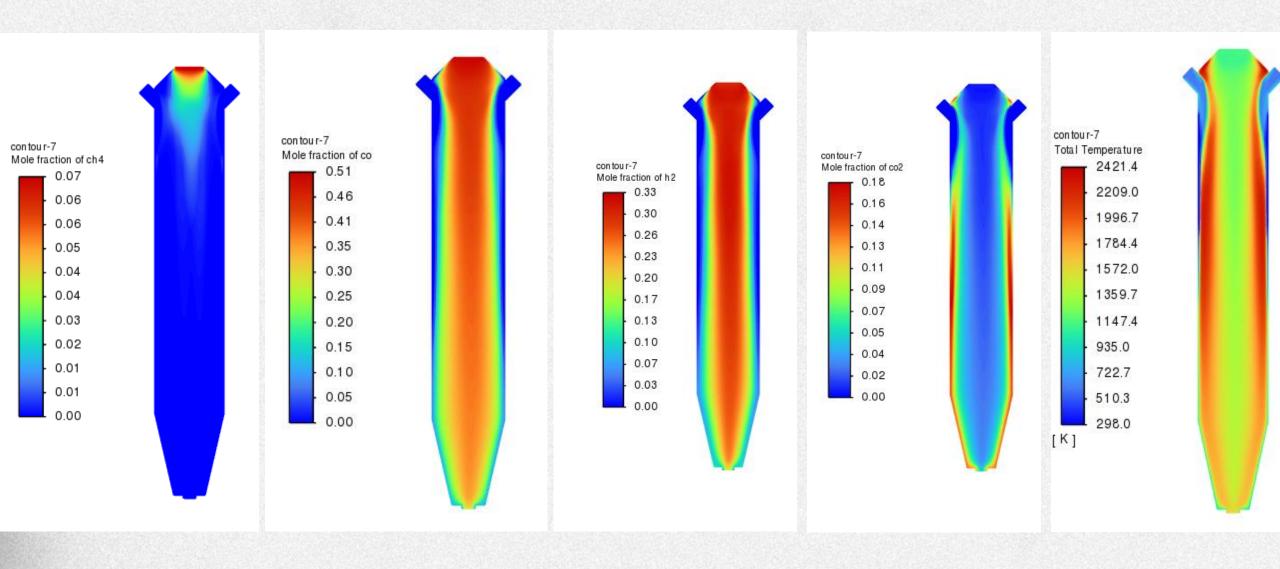

Task 3.2: Student Training in Gasifier Process Simulation


Boundary Condition	15		
Study Type	Steady	Value	
Solver Type	2D Planar		
Models	Standard K-epsilon Turbulence Model Species Transport Model, Standard Wall Functions, P-1 Radiation Model	Intensity: 5%	
Gasifier	Downdraft	300 KW	
Biomass Inlet	Combusting Mass Flowrate, 300K, 1 Atm	17.7g/s	
Gas Agent Inlet	Air Flowrate (Varied with ER), 600K, 1 Atm	32.61g/s	
Syngas Outlet	Exhaust Fan		


Model Mesh

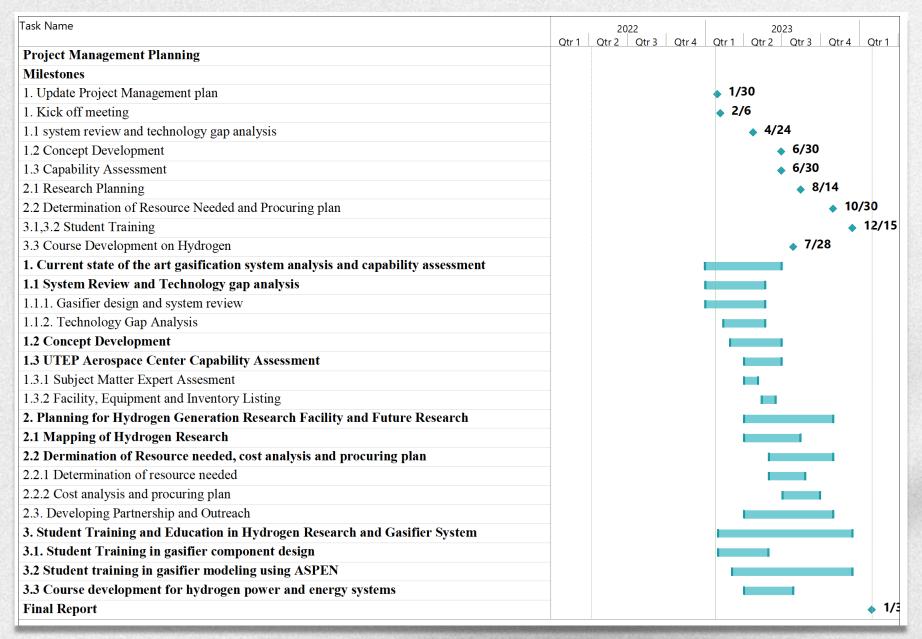



Task 3.2: Student Training in Gasifier Process Simulation



Task 3.2: Student Training in Gasifier Process Simulation

PUBLICATIONS


Southwest Emerging Technology Symposium 2023 (SETS 2023)

- 1. Tasnim, A.F., Chanda, S., Islam, N.A. and Choudhuri, A.R., 2023. **Towards a clean us energy: a systematic comparison between fossil power and sustainable hydrogen power.** Southwest Emerging Technology Symposium. (Paper Accepted)
- 2. Chanda, S., Tasnim, A.F., Islam, N.A. and Choudhuri, A.R., 2023. **Sustainable energy resources in shaping the us energy: a review of the state-of-the-art, opportunities, challenges & ongoing technological development.**Southwest Emerging Technology Symposium. (Paper Accepted)

ASME International Mechanical Engineering Congress and Expo 2023 (IMECE 2023)

3. Chanda, S., Tasnim, A.F., Reyes, D., Choudhuri, A.R. and Islam, N.A., 2023. **A Computational Study of Sustainable Hydrogen Production Using High-Pressure Modular Gasifier.** ASME International Mechanical Engineering Congress and Exposition. (Abstract Accepted, Paper to be submitted in May)

TIMELINE

MILESTONE LOG

01/30/2023	•Updated Project Management		
02/06/2023	•Kickoff Meeting		
04/24/2023 • System Review and Technolog			
06/30/2023	•Concept Development		
06/30/2023	Capability Assessment		
08/24/2023	•Research Planning		
10/30/2023	Determination of Required Resources		
12/15/2023	Student Training		
07/31/202	•Hydrogen Course Development		

BUDGET

PROJECT EXPENSES			SEP	SEP 2022 - MAR 2023			PROJECT LIFE TO DATE; PERIOD ENDING: MAR 2023				
Project ID	Proj Descr	Budget Acct	Acct Descr	Pre-Enc	Enc	Expense	Budget	Pre-Enc	Enc	Expense	Available Budget
226160 678A	Capabilities Development at th	G6020	L6 Faculty Salaries Summer	\$0.00	\$0.00	\$0.00	\$5,436.00	\$0.00	\$0.00	\$0.00	\$5,436.00
226160 678A	Capabilities Development at th	G6030	L6 Staff Salaries	\$0.00	\$4,732.50	\$2,839.50	\$8,583.00	\$0.00	\$4,732.50	\$2,839.50	\$1,011.00
226160 678A	Capabilities Development at th	G6040	L6 Student Salaries	\$0.00	\$8,819.08	\$7,981.10	\$77,222.00	\$0.00	\$8,819.08	\$7,981.10	\$60,421.82
226160 678A	Capabilities Development at th	G6050	L6 Fringe Benefits	\$0.00	\$1,358.07	\$2,193.61	\$13,931.00	\$0.00	\$1,358.07	\$2,193.61	\$10,379.32
226160 678A	Capabilities Development at th	G6140	L6 Other Direct Costs	\$0.00	\$0.00	\$851.50	\$14,782.00	\$0.00	\$0.00	\$851.50	\$13,930.50
226160 678A	Capabilities Development at th	G6145	L6 Workshop- Seminar Costs	\$0.00	\$0.00	\$0.00	\$2,500.00	\$0.00	\$0.00	\$0.00	\$2,500.00
226160 678A	Capabilities Development at th	G6170	L6 Travel - Domestic	\$0.00	\$600.00	\$767.14	\$2,628.00	\$0.00	\$600.00	\$767.14	\$1,260.86
226160 678A	Capabilities Development at th	G6220	L6 Tuition & Fees (Stud Supp)	\$0.00	\$0.00	\$0.00	\$8,000.00	\$0.00	\$0.00	\$0.00	\$8,000.00
226160 678A	Capabilities Development at th	G6250	L6 F&A	\$0.00	\$0.00	\$7,828.60	\$66,918.00	\$0.00	\$0.00	\$7,828.60	\$59,089.40

SUCCESS CRITERIA

Decision Point	Success Criteria
Concept Development (1.2)	Completion of all tasks up to Task 1.2. Developing a feasible solution relevant to clean energy and carbon neutrality goals.
Capability Assessment (1.3)	Developing a list of expertise, and experience levels of affiliated faculties, research associates and engineers of the Aerospace Center. Developing a detailed list of equipment, software and facilities available at the Aerospace Center.
Determination of Resource Needed (2.2)	Completion of all tasks up to Task 2.2. Developing a detailed list of equipment and resources needed for the hydrogen research facility and the procurement options. Determining the subject matter experts required for current and future hydrogen research.
Student Training (3.1,3.2)	Improvement in student knowledge level in gasification. Improvement in student CAD and process simulation skills.
Course development for hydrogen (3.3)	Approval of course by the Mechanical and Aerospace Engineering department at the University of Texas at El Paso.

DELIVERABLES

Task / Subtask Number	Deliverable Title
1.1	Project Management Plan Update
2.1 – 2.3	R&D Scoping and capability assessment of the UTEP Aerospace Center (List of infrastructure, equipment and subject matter experts on disposal of UTEP Aerospace Center)
3.1	UTEP Aerospace Center Hydrogen research development plans
3.2 & 3.3	List of resources required (Infrastructure, equipment, personnel etc.)
4.1 & 4.2	Student training outcomes
4.3	Hydrogen courses for students

Thank You

Md Nawshad Arslan Islam, Ph.D.

Research Associate

Aerospace Center The University of Texas at El Paso 1900 Oregon Street, University Towers, Suite 210 El Paso, Texas, 79902

Office: 915.747.6199 Cell: 915.276.0295 Fax: 915.747.5549 utep.edu/aerospace

Email: mislam12@utep.edu Website: utep.edu/aerospace