

Improving Cost and Efficiency of the Scalable Solid Oxide Fuel Cells Power System

Project ID: FE0031941

Lars Henrichsen, Cummins Inc. Prabhakar Singh, University of Connecticut

April 18, 2023

Project Objective

Improving cost and efficiency of the scalable SOFC power system

Overview

1. 3 year/\$3.25M Project

2. Project Objectives

- 1. Develop analytical models and tools to optimize the Balance of Plant (BoP) design of a SOFC system.
- 2. Design and develop the 20kW range fuel cell power system (FCPS) and build the small scale SOFC power system.
- 3. Demonstrate the performance and durability of the 20kW FCPS for 5000 hours in a real-world environment at the University of Connecticut.
- 4. Develop a cost model, complete techno-economic analysis (TEA) and demonstrate pathways to achieve sub-\$1000/kW goals.

3. Deliverables

- 1. BP1: 20kW System design, build and commissioning for demonstration at UConn
- 2. BP2: 5000-hour demonstration, post-test analysis and TEA demonstrating pathways to achieve sub-\$1000/kW goals

Project Structure

	-	Columbus,		
		Project Management CFD Modeling	Systems Modeling Structural Analysis	
		Design	Experimental Testing	
Malta, NY Advisement		Fridley, MN Power Electronics development		JCONN Storrs, CT System demonstration
SOFC Stack and System assembly End of Line Testing		Control Module development Testing		Post-test analysis

Budget and Milestones

Budget

- Project Start Date: January 1, 2021
- Total Project Budget: \$3,251,307
 Total DOE Share: \$2,601,046
 Total Cost Share: \$650,261
 Total DOE Funds Spent*: \$1,791,583
 Total Cost Share Funds Spent*: \$547,730
 * As of December 31, 2022

Task	Milestone	Status
2.0	M2: System requirements review and architecture definition	Complete
3.0	M3: Calibrated SOFC System Model	Complete
3.0	M4: Computational Fluid Dynamics (CFD) analysis complete	Complete
3.0	M5: Structural analysis complete	Complete
4.0	M6: Power electronics design qualified	7-31-2023
5.0	M7: Balance of Plant system defined	Complete
6.0	M8: Demonstration system design complete	Complete
6.0	M9: Demonstration system assembly complete	7-31-2023
6.0	M10: System commissioned at UConn Go/no-Go to BP2	9-30-2023
7.0	M11: 5000-hour test complete	12-31-2024
8.0	M12: TEA complete	5-30-2025
8.0	M13: Deliver Final Report to DOE	6-30-2025

- Move to new cell designed in DE-FE0031971
 - 780 cm² active area co-flow design
 - Reduced degradation from improved thermal gradients and more uniform current density
 - Fewer cells for same stack power improved \$/kW & kW/L

Cell Manufacture

https://arpa-e.energy.gov/sites/default/files/06 Shapiro GEFC%20overview%20for%20ArpaE.pdf

•

- Thermal spray used to form metallic substrate supported cell
- Quality control process based on 10 cell short stack test •

D. Hickey et al. (2017). Stack Development at GE-Fuel Cells. ECS Transactions, 78(1), 107–116.

Electrical System

- Completed instrumentation wiring and initial checkout of the system controls
- Successfully tested mass flow, temperature, pressure sensors

Electrical System

Upcoming tasks:

- Component characterization against DC power supply and grid simulator
- Supplier requirements validation
- Test against DC power supply and real utility grid with additional relay / breaker protections in place
- Validate Balance of Plant system controls state changes and protocol updates to accommodate Power Electronics
- Validate performance of Power Electronics against real fuel cell stack impedance

SOFC System Testing

Compact system design: approximate dimension 750 mm x 700 mm x 1700 mm

Not SOFC system going to UCONN, but test learnings will inform UCONN testing.

> 500 hours under load

> 300 hours at full load (20 kW DC)

Uf_sys = system fuel utilization

Public

Installation Planning: Codes and Permitting

- Preparation work to secure permit at UCONN test facility:
 - Review and document compliance with relevant regulations
 - NFPA 54: National Fuel Gas Code
 - NFPA 853: Standard for the Installation of Stationary Fuel Cell Power Systems
 - Document system electrical layout, grid connection, and component certification (UL listing)

8.1.5 Indoor Installation.		
8.1.5.1 Indoor liquid fuel pumps automatic fire suppression system.	shall be protected by an	
8.1.5.2* Liquid fuel systems shall diking, or drainage	be provided with curbing,	
anking, of dramage 8.1.5.3 When an ided, it shall be intered the suppression syst the suppression syst 5.5.3 8.1.5.4* Combusti fuel cell power syst com that encloses accordance with the local regulation. 8.1.5.5* A combut ments of 8.1.5.4 sh combut ment	Tubing. g shall not be used with gases of the station for Copper-Brazed Steel Tubing ses Steel. Steel steel. 5.5.2 Metallic Pipe. 268, Stat d Marter 269, Stat less steel, and wrout	corrosive to the h <u>ASTM A254.</u> 3. cast-iron pipe shall not be used. ess Steel, and Wrought Iron. Steel, stain-
 Anstenitic 8.1.5.6 When gase to one or area from installed in accorda 8.1.5.7 The follow systems, including claskage soure (2) The combust to alarm at 25 supply at 60 p (3) The LFL used gas or gas mix 8.1.5.8* Where le gas mixture shall not be user required to have co 8.1.5.9 Systems ention. 	 and shall comply were and Complex were and c	 Chapter 7 Ventilation and Exhaust 7.1 General. 7.1.1 All fuel cell power systems shall be provided with a source of air in accordance with this chapter, with the exception of the following: Fuel cell power systems installed outdoors Listed prepackaged or pre-engineered and matched modular fuel cell power systems that have a sealed, direct ventilation and exhaust system that is installed in accordance with the terms of the listing and manufacturer's installation instructions 7.1.2* The ventilation and exhaust system shall be designed to provide a negative or neutral pressure in the room, with respect to the building. 7.1.3 The ventilation air and exhaust air system(s) shall meet the requirements specified in Sections 5.1, 7.2, and 7.3. 7.1.4 If mechanical ventilation is required, a control interlock shall be provided to shut down the unit upon loss of ventila-

Selections from NFPA 54 and NFPA 853 regulations

Cummins

Overview of UCONN Lab and Test Capabilities

- SOFC research and development activities include R&D at lower TRL's and systems evaluation and analysis at higher TRL.
- ✓ Cell component materials development and testing
- ✓ Electrochemical performance analysis
- ✓ Long term performance and performance stability evaluation
- $\checkmark\,$ Hydrocarbon processing, cleanup and internal reforming
- $\checkmark\,$ Airborne trace contaminants capture
- $\checkmark\,$ Metals, alloys and coatings for stack and BOP applications
- $\checkmark\,$ Corrosion under complex gas atmospheres

Stack and systems performance testing, data analysis and characterization includes

- kW class system electrical test
- Utilization of hydrocarbon fuels
- Performance analysis
- Post test characterization
- Degradation process mechanistic evaluation
- Degradation mitigation approaches development and validation

Electrochemical tests High temperature corrosion Electrode poisoning Getter development and testing

10-20 kW system operation Use of PNG Long term performance analysis Identification of degradation processes

Overview of UCONN Lab and Test Capabilities

- Full and half cell electrochemical test capability
- · Cell component materials synthesis, characterization and testing
- Fuel reforming internal and external utilization with fuel composition analysis
- Electrode poisoning from airborne contaminants; use of getters for contaminant capture
- Electrochemical impedance spectroscopy
- Structural analysis of cell, stack and BOP components
- Corrosion evaluation

Lab capabilities:

Electrochemical testing, cell fabrication, oxidation testing, hydrocarbon reformation,

Transpiration and contaminant capture tests, and others

Characterization techniques:

XRD, SEM, EDS, FIB, TEM, EIS, ICP. Raman spectroscopy,

12

Fuel Quality Monitoring

Link System Customer Interface Gas Quality Postings - Chromatograph Daily Pipeline: Algonquin Gas Transmission, LLC Created.• 4/10/2023 1:00:53 PM

Gas Date: 4/9/2023

Device Id	Device Name	Data	Data	BTU	Specific	WOBBECarbon	Nitrogen	Methane	Ethane	Propane	I-butane N-		C2+	C4+ (Mol	C6+	GPM
		Timestamp	Quality	(IT)/CF	Gravity	Dioxide	(MOI %)	(MOI %)	(MOI %)	(MOI %)	butane	(MOI pentan	e pentane		(MOI	C6+
00050 400				(BTUCF)		(Mol º/0)					(MOI %)(MOI %)	(Mol º/0)	(Mol			(GPM)
00050-152	Burrillville_M/L			4000	0.566		- 000	07 700	4 000	0.040		º/0)		0.001		
00851-1S1	A	04/09/2023	Valid	1026		1364. 0.043	0. 282	97.730	1.900	0.043				0.027	N/A	N/A
	Cromwell-M/L			1026	0.566		o. 244	97.799	1.870	0.041	N/A 0.001	N/A N/A	1.945	0.037		N/A
00050-1S3	Burrillville-	04/09/2023	Valid	1027	0 567	1365. 0.044				_	0 001	1 0/0		0.003	0.036	0.016
	200	04/09/2023	Valid	1021	0.307	1001 0015	o. 284	97.625	1.991	0.052	0.001	1.343			0.000	
	300	0-1/00/2020	Vana			1364 0.045					<u>o. 001 0.002</u>	N/A N/A	2.046		0.000	0.000

Gas Date: 4/14/2023

Device Id	Device Name	Data Timestamp	TOTAL SULFUR (Gr/100SCF)	H2O (Lb/MMCF)
00840-1S1	Hanover LN 26	04/14/2023	.15538	N/A
00320-1S1	Burrillville to End of Line - B	04/14/2023	.00753	2.908

Assessment of BTU
Assessment of hydrocarbons
Assessment of S
Impacts fuel processing
Impacts desulfurizer life

Cummins

UCONN SOFC System Test Facility

- Worked with UConn team to come up interface installation requirements
- Developing CAD model to assist system setup

Dedicated test area Dedicated utilities connection . Dedicated data acquisition ٠ Dedicated electrical connectivity with grid ٠ 51555 C 23596

Commissioning Plan

Commissioning Plan

Installation of SOFC system at UCONN testing facility

System checks:

- Calibration checks of flow sensors and valves
- Calibration checks of sensors and instrumentation
- System leak test
- Electrical checks Blowers, CPOX, Burner, etc.

Functionality checks:

- Cold test of flows and pressure drop across components
- Automated hot test take system to full operating temperature followed by an automated shutdown
- Test Emergency Stop (eStop) system

System performance check:

 Bring system to full load to verify functionality and BOL specifications

Cummins

Test Plan (Preliminary)

Objectives:

- 5000 hours continuous operation
 - Monitor system performance, collect key system parameter T, P, Voltage
- Post-test analysis
 - System tear down analysis, degradation assessment of key components, final summary

Testing Plan (Preliminary)	Comments				
 Start up system Burner to warm system from ambient to operating temperature CPOX for reducing gas on anode side 	 Ensure OCV and group voltages are healthy and within specified tolerance 				
Add current demand in steps up to full load: • Step 1: $0 \rightarrow 20 \text{ A} (50\% \text{ Uf}_sys)$ • Step 2: $20 \rightarrow 40 \text{ A} (70\% \text{ Uf}_sys)$ • Step 3: $40 \rightarrow 60 \text{ A} (75\% \text{ Uf}_sys)$ • Step 4: $60 \rightarrow 130 \text{ A} (85-90\% \text{ Uf}_sys)$	 Current increased in 4 A increments Hold a current constant at each Step until steady and stable operation achieved Perform regular gas analysis to ensure system operating within expected tolerances Manage air flow to maintain stack ΔT within tolerances 				
Hold system at full operating power					

Public

Project Timeline: Next Steps

Acknowledgements

- US DOE for financial support under Award number DE-FE0031941
- Mr. Drew O'Connell for his guidance as Program Manager
- Cummins Malta SOFC facility personnel:
 - Cell design, manufacture, testing
 - BOP and system design, assembly and testing
- UCONN for technical guidance on SOFC systems testing

