

Performance Improvements for Reversible Solid Oxide Fuel Cell Systems (FE0031974)

Hossein Ghezel-Ayagh

2023 FECM/NETL SPRING R&D PROJECT REVIEW MEETING Pittsburgh, PA

April 18, 2023

FuelCell Energy overview

Demand for clean, reliable electricity driving adoption of fuel cell technology

Headquarters Danbury, CT

- Corporate Headquarters
- Research labs

Company Highlights¹

FCEL Listing: NASDAQ

- Engineering design
- Global Service center

Danbury,

Connecticut

Manufacturing Torrington, CT

 Cell & Stack fabrication, Module assembly

Employees

Capacity

in field

• 167,000 sq. ft.

>500

>220 MW

Other facilities Taufkirchen, Germany

- Final assembly for SubMW carbonate stack modules
- Carbonate SubMW power plant sales and service
- Sales and service for carbonate MW scale platforms made in US

Calgary, Canada

Platforms in

commercial

operation²

 Solid oxide R&D for power generation, electrolysis, and energy storage

3

Continents

 Solid oxide cell and stack manufacturing

3 Million MWh's generated with patented technology

Global customers

¹As of the year ended October 31, 2022. ²Note that certain sites have multiple platforms. As an example, our 14.9 MW Bridgeport project site has five 2.8MW platforms. As of 10/31/22, there were 33 sites with the Company's carbonate fuel cell platforms.

95

- The overarching goal of the project is to advance the high efficiency and low-cost Reversible Solid Oxide Fuel Cell (RSOFC) technologies for hybrid operation of water electrolysis as well as power generation, suitable for energy storage combined with capabilities for hydrogen production.
- The objectives of the project include cell performance improvements, stack durability, and optimization of system efficiency resulting in the design of a MW-scale energy storage system with no carbon footprint and an anticipated storage system cost of <\$1000/kW at 50MW/year manufacturing level, leading to hydrogen production cost of <\$2/kg H₂ (at \$30 /MWh electricity price).

FuelCell Energy

Solid oxide - hydrogen based long duration energy storage system

- Hydrogen during charge cycle can be used to provide power during discharge cycle or can be exported to hydrogen user
- Waste heat from other sources can be utilized to reduce electric power consumption
- Expected round trip efficiency of ~70%
- The storage reactant is water, which is regenerated during power generation discharge – does not depend on limited quantities of lithium or cobalt
- Discharge duration is added by adding inexpensive hydrogen and water storage – so cost of storage capacity reduces significantly with longer duration
- Geological storage of hydrogen can provide weekly or seasonal storage

Solid Oxide Technology Applications

Cell Technology for Reversible Operation

Cell Fabrication

Tape Casting

Co-Sintering

"TSC 3 Process"

Automated Screen Printing

Solid Oxide Cell (SOFC) Constituent Layers

Component	Materials	Thickness	Porosity	Process
Cathode	Conducting ceramic	~ 50 µm	~ 30%	Screen printing
Barrier layer	CGO	~4 µm	<10%	Screen printing
Electrolyte	YSZ	~5 µm	< 5%	Screen printing
Anode functional layer	Ni/YSZ	~8 µm	~ 40%	Screen printing
Anode support	Ni/YSZ	~0.3 mm	~ 40%	Tape casting

Cell QC

ID

seal

Old seal Thickness (Z) measuring tool

CSA cell leak tester jig with thickness measuring tool

FuelCell Energy

Long-Term Stability of Cell Operation in Electrolysis Mode

Steady State Operation in Electrolysis Mode at 1 A/cm²

- 16 cm² cell configuration consisting of stack features:
- cross-flow pattern
- flow fields
- electrode contact layers
- glass seals

Negligible cell degradation observed after >6 months of operation

Reversible operation of a 16 cm² cell at ambient pressure (46 SOEC/SOFC cycles over 1,104 hours)

1,000-hour technology stack testing in RSOFC mode with 46 cycles showing ≤ 10 mV/khr degradation

RSOFC Stack Development

Compact SOFC Architecture (CSA) Stack Platform

rioporty	Short	Mid	Full	Comments	
Cell count	45	150	350	Nominal count	
Fuel Cell Voltage, V	43	143	333	At 0.950 V/cell	
Electrolysis Voltage, V	58	192	448	At 1.280 V/cell	
Stack Efficiency, % LHV	74% / 100%	74% / 100%	74% / 100%	Electrochemical eff FC / EL	
Power, kW	0.87 / 2.7	2.8 / 9.3	6.7 / 21.8	At 0.25 / 0.6 A/cm ² (FC / EL)	
H2 production, kg/day	2	6.6	15	At 0.6 A/cm ²	
Height, mm (in)	91 (3.6)	211 (8.3)	440 (17.3)		

Operating conditions shown are representative of energy storage applications

RSOFC Modeling

CFD analysis is used to study the concentration and thermal profile of the stack in charge/discharge modes of operation

High Volume Manufacturing

Robotic QC / Stacking Station

Automated screen printing, drying, cell QC, stack firing, and stack handling equipment

Expansion to 1 MW/year CSA Stack Production

Recent Full Height Stack Test

electrolysis operation

• 45 cell RSOFC stack GT060248-0032

	Cyclic Operating Conditions				
	Fuel Cell (Discharge)	Electrolysis (Charge)			
urrent density	0.2 A/cm ²	0.6 A/cm ²			
me on load	17.25 hours	5.75 hours			
tilizations	25% H ₂ , 30% Air	50% steam			
2/Steam	100%/0% (approx.)	22%/78%			
oncentrations					

1 hour transition times resulting in total cycle time of 24 hours

45-Cell CSA Stack Tests

Internal short ended test after 800 hours 17

RSOFC Pilot System Demonstration

Recently, FCE's Solid Oxide Electrolysis (SOEC) pilot system was upgraded to RSOFC Energy Storage prototype system for reversible demonstration of ~15 kW charge and ~3 kW discharge cycles under EERE project DE-EE0008847

- Upgrade mainly consisted of:
 - Process: Piping & Instrumentation Diagram (P&ID), equipment installation, safety analysis, control philosophy
 - Electrical: power supply/load bank integration, instrumentation, control software and hardware

H2/Steam Recycle Blower from Mohawk Innovative Technology (MTI)

Fuel Cell Mode Load Bank

Power and controls cabinet

SOEC Electrolyzer Module Vent hood

Vaporizer

Updated Pilot Demonstration System Process Flow Diagram (PFD)

- Process Flow Sheet was completed
- Computer Simulation of the system was completed:
 - Steady-State Mass & Energy Balances using ChemCad simulation software

FuelCell Energy

150-Cell Stack for RSOFC System Demonstration

150-cell stack (GT60247-0005)

 150-cell stack was tested in electrolysis mode in the Pilot RSOEC System

- Furnace: 627 C
- Fuel: 50% H2O , 50% H2 @ 76.05 SLPM H2
- Air: 150 SLPM @ 40.5 A -- 76.05 SLPM H2O
- Usteam = 60.0%

Daily Charge/Discharge Cycles

RSOFC Pilot System Upgrade

Internal view of RSOFC Module

- The RSOFC Pilot System will be further upgraded to a capacity of 6 kW discharge and 32 kW charge.
 - Planned development of an advanced power conversion system including a robust algorithm for enhanced stack thermal management and transient load response, resulting in longer stack life and durability

RSOFC Energy Storage Pilot System

- Center of Power Electronics System (CPES) at Virginia Tech is developing Bidirectional DC-DC Converter for RSOFC applications:
 - Current work is focused on development of a topology to minimize current response rise-time and ripples

Analyzed topologies

Technoeconomic Analysis

Giga Factory Stack Cost Breakdown

Yr2019 CSA-SOFC Stack Factory Cost Estimate for 1 GW Stacks per Year

\$ 863 / stack (~\$130/kWdc output) at 160,000 stacks/year

RSOFC Cost vs Production Volume

Cost of Commercial Units Per KWhr

Wrap-up

- Develop Pilot RSOFC System design
 - Finalize System Commissioning
 - Perform case studies at operating conditions of interest
 - Perform parametric analysis to maximize round trip efficiency
- Perform Pilot System upgrade
 - Develop control algorithms
 - Incorporate hardware upgrades
- Conduct RSOFC system demonstration tests

Thank You

Acknowledgement: Support and Management under DOE/NETL Projects DE-FE0031974 & DE-FE0032032

Dr. Shailesh Vora Dr. Patcharin (Rin) Burke Sarah K. Michalik

Our purpose: Enable the world to be empowered by clean energy

