Development of Stable Solid Oxide Electrolysis Cells for Low-cost Hydrogen Production

Contract Number: DE-FE0032105

P.I.: S. Elangovan, **Co-P.I.:** Jenna Pike Tyler Hafen , Dennis Larsen, Joseph Hartvigsen, OxEon Energy Team Prof. Bilge Yildiz Group, MIT Dr. Olga Marina, PNNL

Support: NASA, DOE

23rd Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting Pittsburgh, PA April 18 - 20, 2023

DOE Project Manager: Drew O'Connell

Beyond Current Potential

Company Background

Utah, USA R&D/Manufacturing - 2017

- Office, laboratory, and manufacturing facility (24,000 ft²)
- NASA, DOE, DOD and commercial contracts
- Tape casting, cell and stack production, and testing
- End-to-end power to synfuels pilot plant

Solid Oxide Fuel Cell and Electrolysis Stacks

- Longest running solid oxide fuel cell & electrolysis group in world
- Only flight qualified, TRL 9 SOEC unit with active NASA demonstration on Mars
- 30kW/10kW and 20kW/10kW reversible SOC system test programs

Fuel Reformation and Generation

- Plasma Reformer H₂ or syngas from flare gas; digester gas conversion; clean-up bio-gasification
- Fischer-Tropsch Reactors Modular design for sustainable fuel production from H₂ and syngas

Project Objective

- A solid oxide electrolysis cell (SOEC) stack in a laboratory test bed
 - show improved performance over baseline stacks
 - robustness,
 - reliability,
 - endurance,
 - hydrogen purity, and
 - produce hydrogen at elevated pressure of 2 to 3 bar.

Project Goals

Improved performance over baseline

- Reproducibility and lower polarization by electrode modification
- Long term stability
 - projected lifetime of > 40,000 hours

Robustness

- Capability for thermal cycling of a stack
- Redox cycling of fuel electrode in a stack
- Production of hydrogen at elevated pressure

Robustness

Redox Tolerant Fuel Electrode - Background

Mars OXygen ISRU Experiment aka "The Oxygenator"

CO_2 to $CO + O_2$

First of any kind of demonstration of **In-Situ Resource Utilization (ISRU)** technologies to enable propellant and consumable oxygen production from the Martian atmosphere - Currently onboard Perseverance Rover

MOXIE is a ~0.5% scale prototype of expected final O_2 production rate

Flight Qualification

Baseline Performance

• 21 consecutive stacks built with aerospace quality standards and traceability having a maximum baseline performance of 1.6 ohm-cm² dry CO₂ and 99.9%+ O₂ purity

Cycling Performance

- 3 stacks with 21 cycles of identical test procedure having varying cycle-to-cycle flow rates and final cycle averages of 10.11 g O₂/hr production and 99.8% purity Targets exceeded
- 1 stack to cycle 61 with >99.6% purity at a controlled production rate of 6 g/hr at 55g/hr feed

Structural Stability Testing

- No leak or significant performance change after 10kN crush testing
- Stacks tested to 25kN force with no crossover or external leakage
- Load to failure required 62.2kN (>30 margin of safety from design)

Shock/Vibe Testing

- Stacks vibrated at JPL and post vibe tested at OxEon
- No leak or significant performance change post vibe!
- No leak after shock testing, no significant performance change!

Cryo-Cycling

- Vibe stack cryo-cycled to -40°C (40 cycles), -55°C (3 cycles), -65°C
- Stack performance and purity unchanged in operational cycling post test

Cathode Challenge: Oxidation in dry CO₂

• Early MOXIE Test Stack:

- 15 operational cycles full thermal cycle with 120 min operation on dry CO₂
- Dry $CO_2 \rightarrow O_2$ production ~12% of initial

Dramatic degradation resulted from progressive oxidation front

Oxidation of Ni to NiO causes ~24% vol expansion, and in this case, irreversible damage to the electrode & current collector

MOXIE implemented recycle of produced CO to prevent cathode oxidation

Flight Test Success - First Ever ISRU Demonstration!

First 100 Sols!

Sol 5 "Aliveness Test" Mon Feb 22, 2021

- Sol 13 First run with Run Control Table (RCT)
- Sol 14 "Health Check" of heaters and compressor
- Sol 59-60 April 20, First Oxygen
 - Produced 5.4 g O₂ pre-dawn, peak rate of 6 g/h (2 A current)
- Sol 81 May 12, 2nd Oxygen
 - Nighttime (early AM) operation
 - Produced 7 g O_2 , 8 g/h peak

Sol 100 May 31 3rd Oxygen

- Mid-day operation with lower atmospheric density
- Extended 8 g/h operation

13 Successful high purity (>99.6%) oxygen production runs on Mars to-date

First Run

NASA Support through JPL

Redox Tolerance for CO₂ Electrolysis (NASA SBIR)

Ni-based electrode

Button Cell: Redox Cycling and Long-Term Stability for CO₂ Electrolysis **()**×Eon

Down-selected Composition Ni-Ceria based (N85)

- Full Redox Cycle = 12 hours off load with dry CO₂ only feed
- Kept at 800 °C to nearly fully oxidize the cathode material (Ni metal → Nickeloxide)
- Load is reapplied
- No external reducing gas

STK-033 Partial and Full Redox Cycles

- Stack: Short (20 min) and long (12 hrs) exposure to CO₂
- Application of voltage full recovery of performance

Redox test #1 Pacific

- 0.35 A/cm² at 1.3V initially with 20%H₂;
- Current increases after each redox cycle, then drops; 3 cycles completed: 1h, 16h, 16h

kW class stack: Redox Cycle in Steam Electrolysis

Stack test at Colorado School of Mines:

Stack in Lunar vacuum

Power supply problem

- Recycle H₂ stopped
- Current to zero
- Voltage dropped
- Restored power supply
- Stack performance recovery

NASA Funded (Tipping Point Project)

Electrode Improvement - DE-FE0032105

Focus: Address known/suspected degradation mechanisms

Integrated Approach to Addressing SOEC Degradation

No.	Degradation mechanism	Effect	SOEC component	Activity	Project Support
1	Cr transport from interconnect	Poisons active electrochemical sites	O ₂ electrode	Poisoning Effect (PNNL) Spinel Coating	DOE/NETL NASA Phase II-E
2	Perovskite composition instability over time	Catalytically inactive and electrically resistive grains/ Non-catalytic secondary phases	O ₂ electrode / current collector	Composition modification	DOE/NETL NASA Phase II E
3	SiO ₂ migration from seal	Contaminates electrodes	O ₂ electrode Fuel electrode	Poisoning Effect (PNNL)	DOE/ NETL NASA Phase II E
4	Cation diffusion	Formation of more resistive phases	Electrolyte CeO ₂ barrier	Process modification	DOE/ NETL NASA Phase II E

Oxygen Electrode Interface Improvement

SDC Barrier layer

- Improve sinterability to lower sintering temperature
- Eliminate interface reaction between ceria and zirconia

Standard SDC

x5,000

5 Mm

15kU

This Project + NASA SBIR

Oxygen Electrode Interface Improvement

SDC Barrier layer

- Sr migration occurs at discontinuous and porous regions in the barrier layer
- "Ideal" sintering temperature balances densification, interface reaction, & manufacturability (co-sintering with electrodes)

Discontinuous >150 °C Reduction barrier layer.

This Project + NASA SBIR

Eliminate Sr in current collector layer by replacing LSCF with Sr-free perovskite mixed with Ag-alloy

- Ohmic resistance close to expected based on electrolyte thickness ۲
- Polarization resistance indicate LSCF layer is not required for water splitting ٠

LCAP10 current collector shows good bonding to electrode layer

	Current	ASR ($\Omega \cdot cm^2$)		
Electrode	collector met Vol% in cermet	Total	Ohmic	Polarizatio n
Sr-free	10%	0.79	0.66	0.13
Sr-free	30%	0.66	0.59	0.08
Sr-free	50%	0.62	0.50	0.12
LSCF	50%	0.71	0.52	0.19

Sr-free electrode

Air electrode barrier

Electrolyte

This Project

Sr-stabilization in oxygen electrode – multiple approaches

- A-site deficiency in the LSCF perovskite (A_{1-x}BO₃)
- Additional dopant in LSCF
- Using LSCF-composite current collector
- LSCF surface treatment

Doped LSCF CC layer cell performance stabilizes after initial degradation, compared with LSCF CC

Fuel Electrode / Current Collector

Reduce current collector cost by reducing Ag-alloy concentration (15%, 30%, 50%)

- Reduce cost but maintain performance and redox tolerance! •
- Button cell performance is comparable with lower Ag-alloy concentration processing ulletmodifications will reduce Ag-agglomeration and improve interconnected metallic network

50% Ag-alloy

This Project + NASA SBIR

30% Ag-alloy

15% Ag-alloy

15% Ag-alloy current collector is not redox tolerant

- Steam redox cycle tests show lower Ag-alloy current collector is not redox tolerant
- Removing H₂ from the feed (N₂ and Steam only) resulted in high degradation rate
- Full redox cycle resulted in large performance drop. Cell did not recover.
- Q: better distribution or more Ag??

500

15% Ag-alloy Current Collector Redox Testing 800 C, 1.3 V hold

Historical 10-cell stack tests show incremental improvements in SOFC operation

Stack	STK-37	STK-57	STK-65
Program	INL 30 kW	Stone Edge Farm	NASA SBIR II-E
Fuel Electrode	Ni-SDC	Ni-SDC	Redox tolerant
Fuel Electrode Infiltrant	Yes	Modified	modified
Air Electrode barrier layer	SDC	Mod-SDC	Mod-SDC
Air Electrode I	Sr-free+SDC	Sr-free+SDC	Sr-free+SDC
Air Electrode II	LSCF	LSCF+SDC	LSCF+SDC
Air Electrode Infiltrant	Yes	Surf treat + infilt	Surf treat + infilt

This Project + NASA SBIR + INL 30 kW + Stone Edge Farm

Materials Validation and Performance Mapping

Button cells will be tested in steam electrolysis range of temperature, steam utilization, and cell voltages to assess performance and stability

- Cathodic overpotential modifies the surface of LSCF-SDC electrode and improves the chemical and electrochemical stability
 - Main objective: Suppression of Sr segregation

Effect of Impurities on Fuel Electrode Performance

Effect of Mn impurities on the fuel electrode in SOEC mode PNNL – button cell testing with stainless steel shows no Mn in EDS analysis Tested for 168 hour at 800°C at 0.7V Cell was degrading continuously No Mn detected in Ni by SEM/EDS

Pacific

Tested in 100% H₂ for 168 hour at 800°C at 0.7V: H₂ electrode with SS

Northwest • Electrolyte to H electrode interface – BSE image

IVIn signal	
H electrode	Atomic %
0	34.99
Ni	31.32
Zr	16.71
Ce	7.83
Mg	2.92
AI	2.51
Υ	1.45
Cu	1.39
Sm	0.64
Sc	0.17
Са	0.08
Pr	0.00
Total	100.00

Effect of Impurities on Fuel Electrode Performance

Effect of **Si** impurities on the **fuel electrode** in SOEC mode

- Button cell on steam electrolysis with RO filtered water has measured better stability (BC-104-10).
 - DI water from supplier contained 0.3 mg/L SiO₂
 - No SiO₂ detected after Reverse Osmosis filtration
- Improved stability in SOEC when steam is produced from RO-treated water.
- Distilled water contains trace SiO₂

Effect of Impurities on Oxygen Electrode Performance

Improve Cr-barrier interconnect coating

- Optimized coating dispersant, powder loading, and viscosity to increase barrier layer density
- High-density coating regions near the CFY substrate with porosity further up the coating thickness.
- Next steps characterization of electrodes placed in contact with coated interconnect coupons at 800 C

Two different dispersants selected

NASA SBIR

Oxygen Production (Seal Validation)

High Purity O₂ on Mars

• External to stack Mars ambient ~ 7 millibar

Oxygen production at pressure (steam electrolysis test at CSM in vacuum chamber)

- Stack in vacuum
- H₂ production at 1 bar
- O₂ production up to 3.6 bar via electrochemical compression

This Project

- Short stack testing in pressurized test stand
- Test stand modifications are underway This Project

MOXIE scale stack (left) and demonstration system scale stack (right)

- Cr poisoning tests were performed 3 times, each time using 2 cells
 - Dry air, 800°C, ~ 1 ppb Cr
 - Wet air, 800°C , ~ 1 ppm Cr

Not growing in time in clean air

Cr in getter post-test

Yet no Cr detected in oxygen electrode by SEM/EDS

Test Description

Equilibrium Cr Content in Air

Downstream Filter

Chromia Pellet

Next Task: Pressurized SOEC Operation

Pacific

Northwest

- High-pressure rig was built in 2022 but had to relocate to a different building
- Faced building operation and infrastructure issues and delays preventing H₂ usage; issues have been resolved
- Initiated pressure regulators testing and troubleshooting the system
- Aiming to start cell testing next week

Pressurized cell test rig

Summary

- Multiple projects to provide complementary scope/results
- Redox tolerance validated for steam electrolysis
 - Oxidized Ni electrode recovery without the need for hydrogen in inlet
 - Modifications for improvements will be validated

Electrode materials modification - validation in progress

- Composition to improve thermochemical stability
- Surface modification for improving catalytic property
- Investigation of poisoning effect ongoing
- Pressurized tests: steam electrolysis
 - button cells to begin shortly
 - Stack in Year 2

Thank you

S Elangovan elango@OxEonEnergy.com

Some of the material in the resentation is based on work supported by NASA through JPL's prime contract under JPL subcontract number 1515459. The authors would like to acknowledge the contributions of Michael Hecht (MIT, MOXIE Principal Investigator, PI), Jeff Hoffman (MIT, MOXIE Deputy PI), Jeff Mellstrom (JPL, MOXIE Project Manager), Carl Guernsey (JPL, SOXE Contract Technical Manager), Gerald Voecks (JPL, SOXE lead) in support of the SOXE Development Role on MOXIE.

NASA NextSTEP and Tipping Point Materials work was supported by NASA SBIR contract: 80NSSC19C0114

DOE-NETL DE-FE0032105

info@oxeonenergy.com +1-801-677-300 oxeonenergy.com

PLASMA

Beyond Current Potential