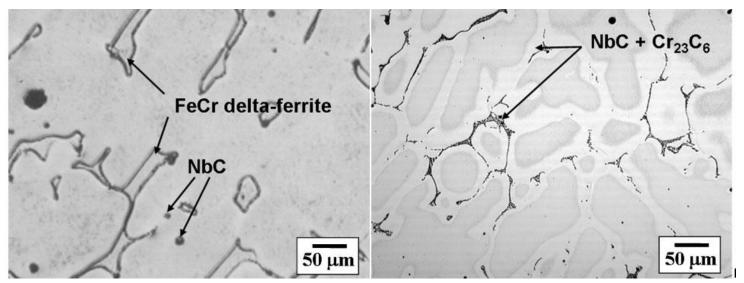


FEAA133-Low Cost High Performance Austenitic Stainless Steels for A-USC

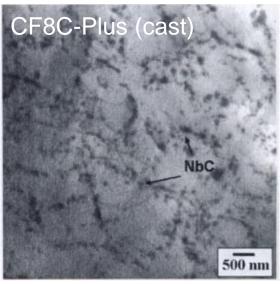
Xiang (Frank) Chen (chenx2@ornl.gov), Peter Tortorelli, Michael Santella, Timothy Lach, Roger Miller, Hong Wang, Bruce Pint, Edgar Lara-Curzio Oak Ridge National Laboratory

<u>Benjamin Sutton,</u> Daniel Purdy Electric Power Research Institute

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

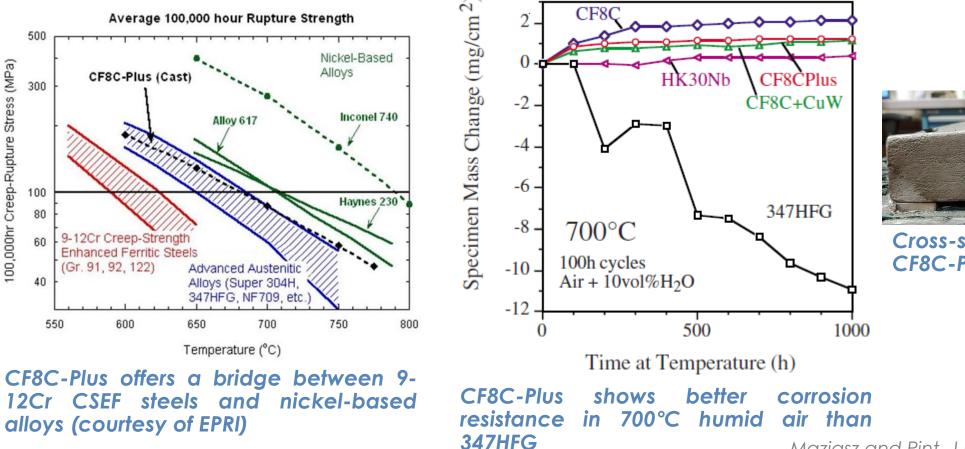

2023 FECM / NETL Spring R&D Project Review Meeting April 18-20, 2023 Pittsburgh, PA

Background (1/3)


 <u>CF8C-Plus</u> is a heat- and corrosion-resistant cast austenitic stainless steel developed by the Oak Ridge National Laboratory and the Caterpillar Technical Center (US Patent 7,153,373 B2)

	С	Si	Mn	Cr	Мо	Ni	Nb	Ν	Fe
CF8C-Plus	0.08	0.5	4.0	19.0	0.3	12.5	0.80	0.25	Bal
CF8C	0.1	1.0	1.0 max	19.0	0.3	10	0.80	-	Bal

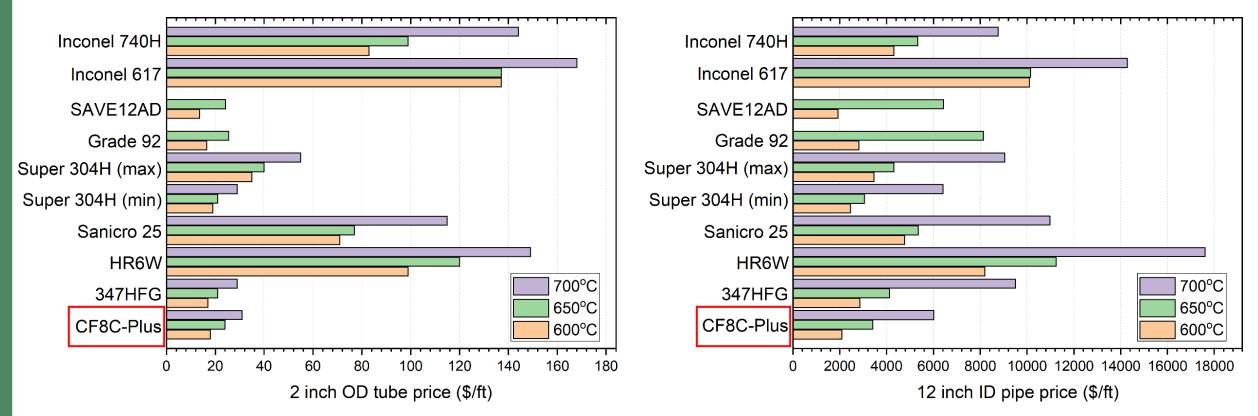
Composition (wt%)


As-cast microstructure: CF8C (left) & CF8C-Plus (right)

Nanoscale NbC precipitates in CF8C-Plus (courtesy of EPRI)

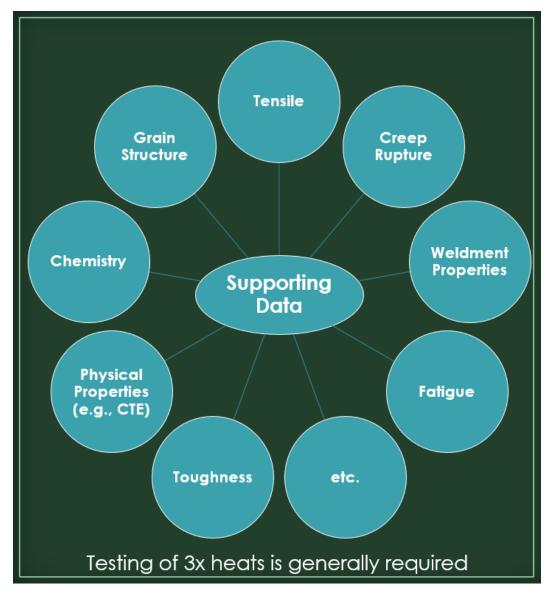
Background (2/3)

- CF8C-Plus shows unique combination of <u>high temperature strength</u>, corrosion resistance, castability, and weldability
- Moreover, the strength advantages and weldability are found in the <u>as-cast</u> <u>condition</u> without additional heat-treatment



Cross-section view of SMAW of CF8C-Plus

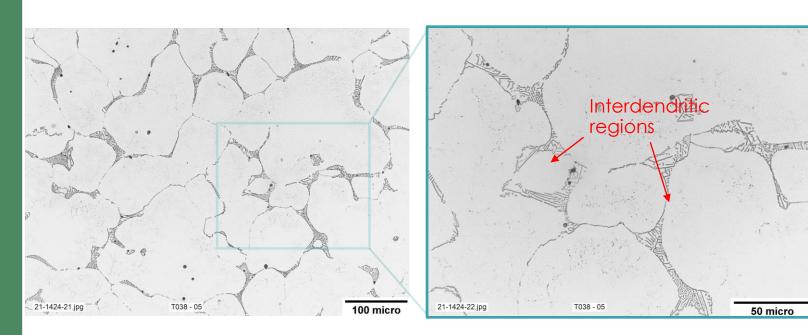
Background (3/3)


 CF8C-Plus offers impressive <u>economic advantage</u> over other A-USC candidate materials for the temperature range of 600-700°C

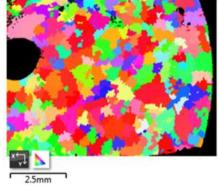
Material price per foot to withstand 24MPa steam pressure between 600 and 700°C

Objective: create <u>cast (ORNL lead)</u> and <u>wrought (EPRI lead)</u> CF8C-Plus data packages and pursue ASME code case approvals

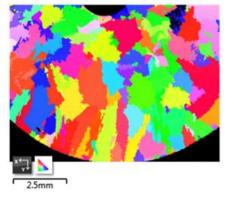
- ASME Code Case for New Materials General Process
 - Inquirer submits request to ASME
 - Application contains:
 - Intended ASME Section(s) / Division(s)
 - Intended service: temperature limits, cyclic vs static, ...
 - Product forms, size ranges, specification...
 - Chemistry limits
 - Heat treatment / microstructure
 - Supporting data
 - Data requirements vary case-by-case
 - Dependent on design rules and type of material

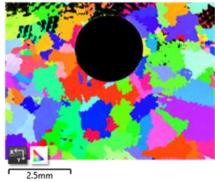


Cast CF8C-Plus ASME Code Case Application

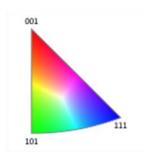


As-Cast Microstructure and Heat-to-Heat Variation

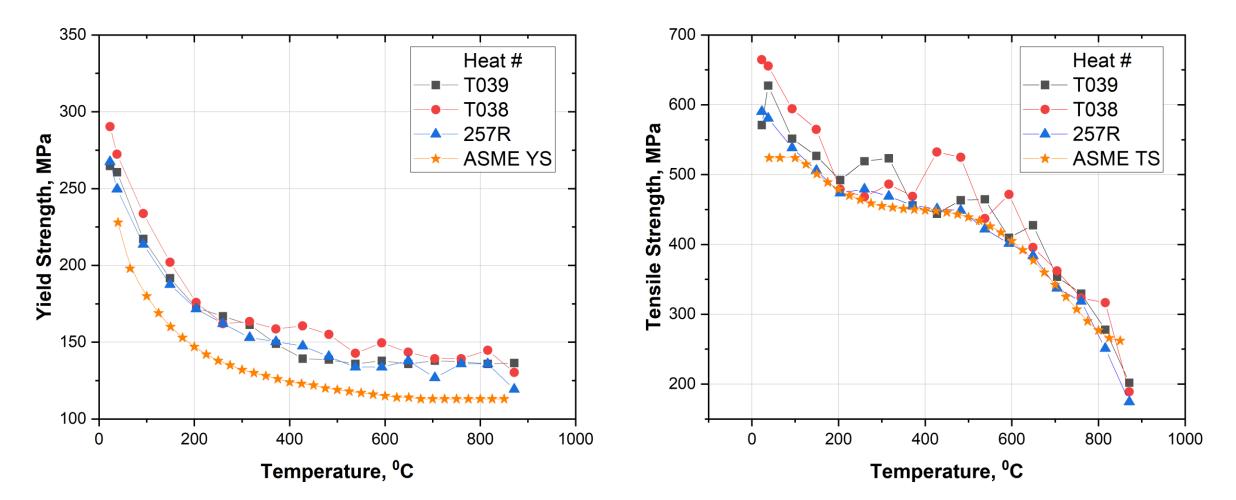

- Dendritic features and interdendritic regions are well defined
- Heat-to-heat variation of grain sizes were observed
- No ferromagnetic readings were found using a ferrite meter for all heats
- Small percentage of porosity (0.09-0.15%) with pore diameter ~2-3 µm was observed



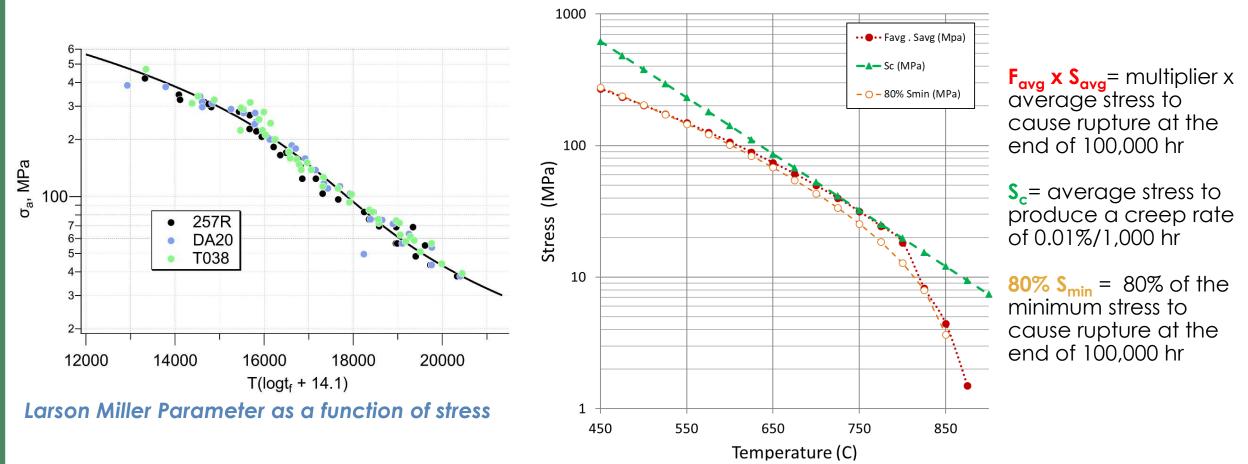
Optical metallography of cast CF8C-Plus, heat T038



Heat 257R, GS: 481 µm


Heat T038, GS: 591 µm

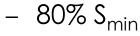
Heat DA20, GS: 746 µm

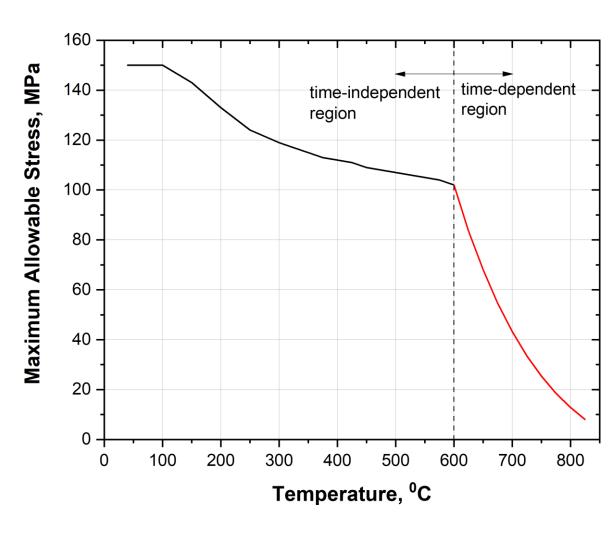

Yield and Tensile Strength Values

- 51 tensile tests have been performed from 22 to 871°C for three heats of materials
- <u>ASME Sec. II Part D subpart 1 yield and tensile strength</u> values have been determined

Creep Rupture Life

- 103 creep tests performed from 482 to 871°C for three heats of materials accumulating 457,403 hrs (~52 yrs)
- The maximum allowable stress in creep-domain have been determined

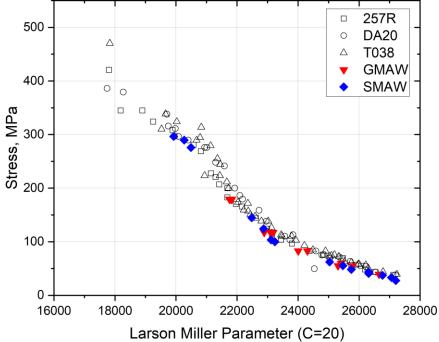



Maximum allowable stress based on creep results

ASME Sec. II Part D Subpart 1 Maximum Allowable Stresses

- <u>Time-independent</u> region governed by tensile properties lowest of
 - the specified minimum tensile strength at room temperature divided by 3.5
 - the tensile strength at temperature divided by 3.5
 - two-thirds of the specified minimum yield strength at room temperature
 - two-thirds of the yield strength at temperature
- <u>Time-dependent</u> region governed by creep properties – lowest of
 - $F_{avg} \times S_{avg}$

$$-S_{c}$$



Weld Procedure Qualification and Weld Creep Testing

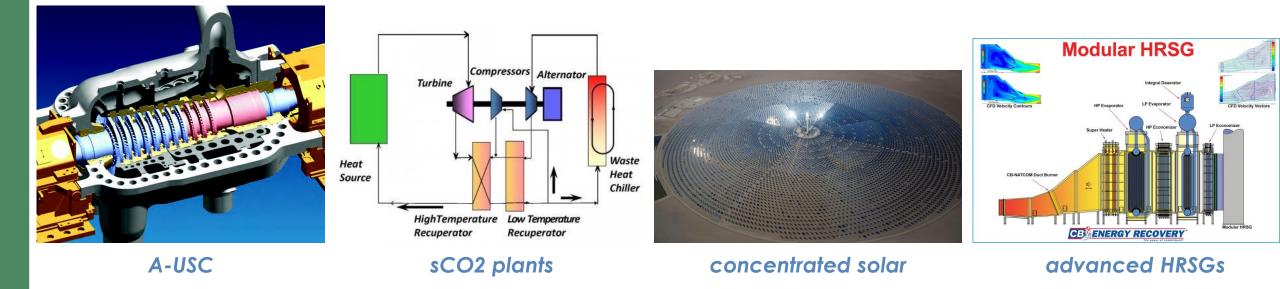
- **Two welding procedures** have been qualified for cast CF8C-Plus
 - 1. Shielded Metal Arc Welding (SMAW) with alloy 117 filler metal
 - 2. Gas Metal Arc Welding (GMAW) with alloy 617 filler metal
- Creep tests on SMAW and GMAW showed similar Larson Miller Parameter (LMP) as the cast base metal (BM) indicating <u>no weld strength reduction</u>

Weld tensile and guided bend tests

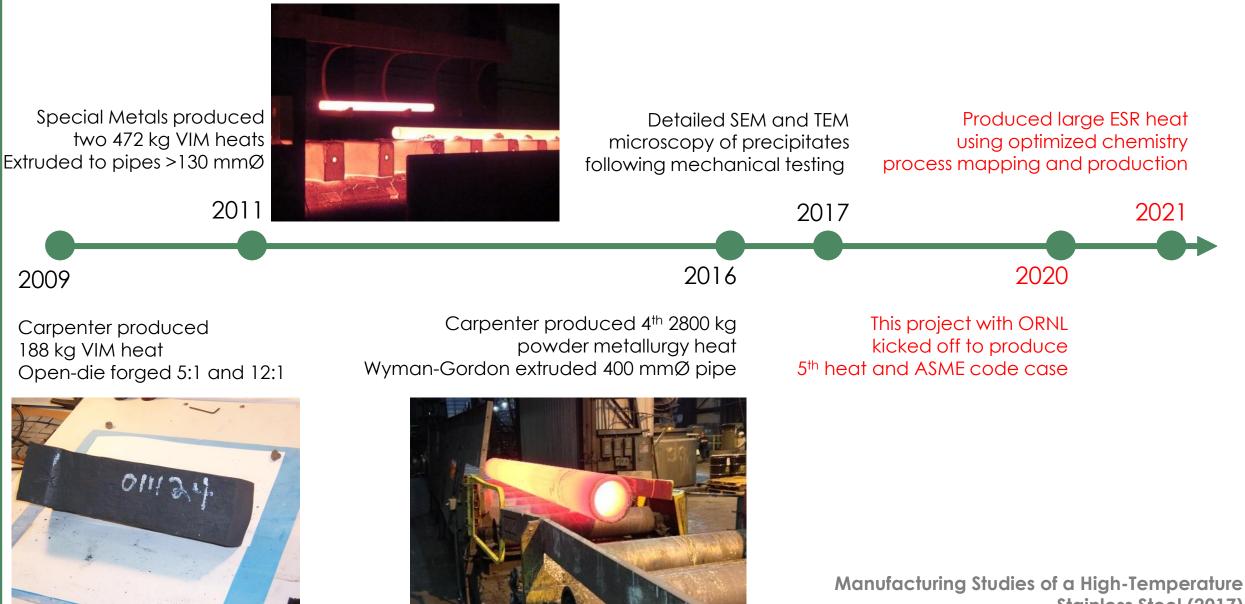
Comparison of LMP between BM and weld

Cast CF8C-Plus Code Case Status

- ASME BPVC Sec I code case #3049 approved for use in power boilers
- ASME B31.1 code case #199-1 approved for use in power piping
- Both code cases are going through a revision to further increase maximum allowable stress

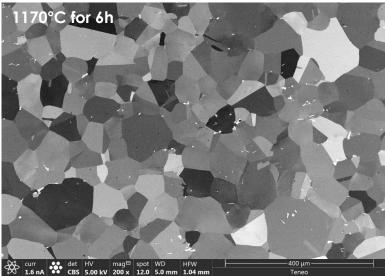

	CASE	B31 Case 199-1
ACME DDVC C	CC.BPV.S6-2021 3049	Approval Date: June 6, 2022
ASME BP VCC	.C.BPV.30-2021 50-75	ASTM A351 Grade HG10MnN, UNS J92604
		ASME B31.1
Annroual Dat	ter May 4, 2022	Inquiry: May austenitic stainless steel castings conforming to ASTM A351 Grade HG10MnN (UNS J92604) be used
	te: May 4, 2022	in welded and non-welded construction under ASME B31.1?
Code Cases will remain available for use until	l annulled by the applicable Standards Committee.	in weided and non-weided construction under Asive B31.1?
		Reply: In the opinion of the committee, yes, provided the following additional requirements to the published ASME
Case 3049	(h) Weld repairs to castings shall be made with the fol-	B31.1 Code book are met:
ASTM A351/A351M-14 Grade HG10MnN (UNS J92604)	lowing welding process and consumables:	
Section I	(1) Welding process – SMAW	a) The physical properties for UNS J92604 are found in ASME BPVC or ASME B31.1 as follows:
	(-a) Specification SFA-5.11/SFA-5.11M	 Thermal Expansion properties shall be taken from austenitic stainless steels in ASME B31.1
Inquiry: May austenitic stainless steel castings conform-	(-b) AWS Classification ENiCrCoMo-1	Table 8-1:
ing to ASTM A351/A351M-14 Grade HG10MnN (UNS	(-c) UNS Number W86117	 Thermal Conductivity and Thermal Diffusivity shall be taken from Material Group K in Table
J92604) be used in welded and nonwelded construction	(2) Welding process – GMAW and GTAW	TCD of ASME Section II Part D:
under Section I?	(-a) Specification SFA-5.14/SFA-5.14M	 Elastic Moduli shall be taken from austenitic stainless steels in ASME B31.1 Table C-1;
Reply: It is the opinion of the Committee that austenitic	(-b) AWS Classification ERNiCrCoMo-1	 Poisson's Ratio and Density Values shall be the same as shown for high alloy steels (300-Series)
stainless steel castings conforming to ASTM A351/	(-c) UNS Number N06617	in Table PRD of ASME Section II Part D.
A351M-18 Grade HG10MnN (UNS J92604) may be used	(i) Weld repairs to castings as part of materials manu-	 b. The maximum allowable stress values for the material shall be those given in Tables 1 and 1M. The
in welded and nonwelded construction under Section I,	facture shall be made following welding procedures and	maximum design temperature shall be 1500°F (816°C). A casting quality factor in accordance with
provided the following additional requirements are met:	by welders qualified in accordance with Section IX. All	paragraph 102.4.6 shall be applied to these allowable stresses.
(a) The physical properties for UNS J92604 are found in	weld repairs shall be recorded with respect to their loca-	c. The casting shall be inspected in accordance with the requirements of Supplementary Requirements S5
Section II, Part D as follows:	tion on the casting. Supplementary Requirement S12 of SA-703 shall apply. For weld repairs performed as part	of ASTM A351 (Radiographic Inspection).
(1) Thermal expansion properties shall be taken	of materials manufacture, the documentation shall be in-	
from Group 3 austenitic stainless steel in Table TE-1. (2) Thermal conductivity and thermal diffusivity	cluded with the Materials Test Report. For weld repairs	 The casting shall not require any additional heat treatment.
shall be taken from Material Group K in Table TCD.	performed by the Manufacturer, documentation shall be	e. Separate welding procedure qualifications conducted in accordance with ASME Section IX shall be required
(3) Elastic moduli shall be taken from Material Group	included with the Manufacturer's Data Report.	for this material. For the purposes of performance qualification, the material shall be considered P-No.8
G in Table TM-1.	(j) A manufacturer's test report meeting certification	material.
(4) Poisson's Ratio and density values shall be the	requirements of SA-703 shall be provided.	f. Weld repairs to castings or cast pipe shall be made with the following welding process and consumable:
same as shown for 300-Series austenitic stainless steels	(k) This Case number shall be shown in the material	1) Welding Process – SMAW
in Table PRD.	certification and marking of the material. (1) This Case number shall be shown on the Manufac-	a. Specification - A5.11/A5.11M
(b) The maximum allowable stress values for the mate- rial shall be those given in Tables 1 and 1M. The maxi-	turer's Data Report.	b. AWS Classification - ENiCrCoMo-1
mum design temperature shall be 1,500°F (816°C). A		c. UNS Number - W86117
casting quality factor in accordance with PG-25 shall be	CAUTION: Austenitic alloys are subject to stress corrosion cracking, intergranular attack, pitting, and crevice corrosion	 Welding Process – GMAW and GTAW
applied to these allowable stresses.	when used in boiler applications in aqueous environments. Fac-	a. Specification - A5.14/A5.14M
(c) The yield strength and tensile strength values for	tors that affect the susceptibility of these materials are applied	b. AWS Classification – ERNiCrCoMo-1
use in design shall be as shown in Tables 2 and 2M.	or residual stress, water chemistry and deposition of solids, and material condition. Susceptibility to attack is enhanced when	c. UNS Number – N06617
(d) The chemical composition shall be as shown in	the material is used in a sensitized condition or with residual	g. Weld repairs to castings as part of materials manufacture shall be made following welding procedures and
Table 3. (e) The casting shall be inspected in accordance with	cold work. Concentration of corrosive agents (e.g., chlorides,	welders qualified in accordance with ASME Section IX.
the requirements of Supplementary Requirement S5 of	caustic, or reduced sulfur species) can occur under deposits	h. All weld repairs shall be recorded with respect to their location on the casting. Supplementary
ASTM A351/A351M-14 (radiographic inspection).	formed on the surface of these materials and can result in se- vere underdeposit wastage or cracking. For successful opera-	Requirement S12 of ASTM A703 shall apply. For weld repairs performed as part of materials manufacture,
(f) With respect to heat treatment, castings shall be	tion in water environments, careful attention must be paid to	the documentation shall be included with the Materials Test Report. For weld repairs performed by the
used in the as-cast condition. After weld repair, postweld	continuous control of water chemistry.	
heat treatment is neither required nor prohibited.	This material may be superied to develop embediate events for	Manufacturer, documentation shall be included with the Manufacturer's Data Report.
(g) Welding procedure and performance qualifications	This material may be expected to develop embrittlement after exposure at moderately elevated temperatures.	 Postweld heat treatment is neither required nor prohibited
shall be conducted in accordance with Section IX. Sepa-	exposure at moderately devated temperatures.	j. A manufacturer's test report meeting certification requirements of ASTM A703 shall be provided.
rate welding procedure qualification is required for this material. For performance qualifications, this material	See Section II, Part D, Nonmandatory Appendix A, A-207 and	k. This Case number shall be shown in the material certification and marking of the material.
shall be considered P-No. 8.	A-208.	 This Case number shall be shown on the Manufacturer's Data Report.
Code	case 3049 (leff) ar	nd code case 199-1 (right)
COUE		

Wrought CF8C-Plus Development and ASME Code Case Application


Wrought CF8C-Plus for Power Piping

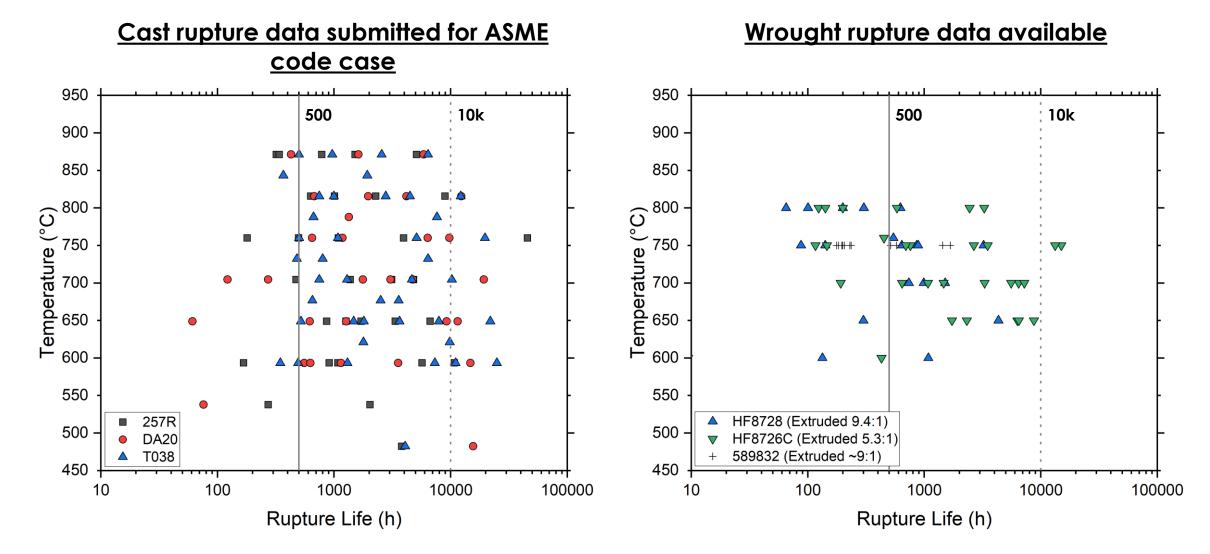
- Power generation industry has interest in advanced austenitic stainless steels for boiler components
 - Qualified alloys support economic, flexible, and high efficiency piping in all extreme environments

- Candidate alloys: NF709, Super 304H, Sanicro 25, and now a derivative of CF8C-Plus


EPRI is leading product development and commercial-scale demonstration of wrought/extruded CF8C-Plus alloy

Development of 5th Heat

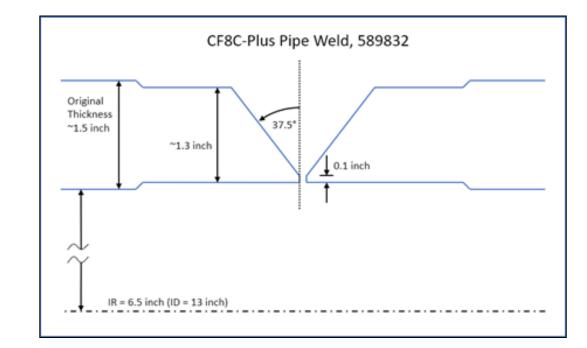
- Alloy design and chemistry targets
 - Computational thermodynamic assessment of carbide and nitride stability
 - TEM/STEM work on precipitates from several heats
 - Optimized chemistry targets from cast formulation
- Ingot production at Carpenter
 - EAF+AOD, ESR, 2 ingots ≈ 12,600kg
- Gleeble-based study for thermomechanical properties
- Extrusion at Wyman Gordon
 - 3,500 kg segment to produce a pipe with 900 mm length X 400 mm OD X 44 mm wall thickness
- Microstructure evaluation and heat treatment optimization...



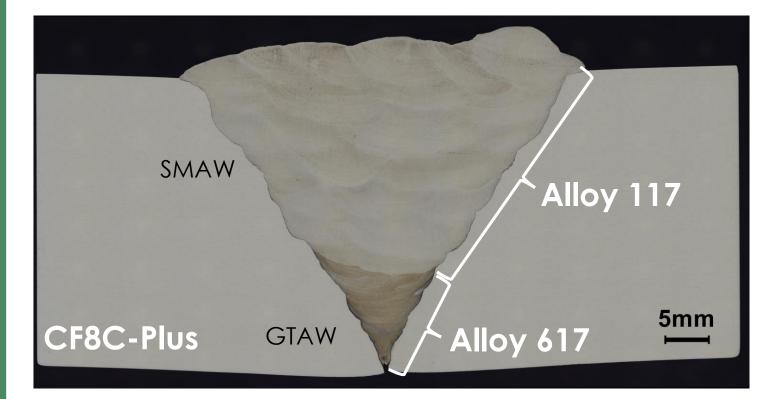
Heat Treatment Optimization on 5th Heat

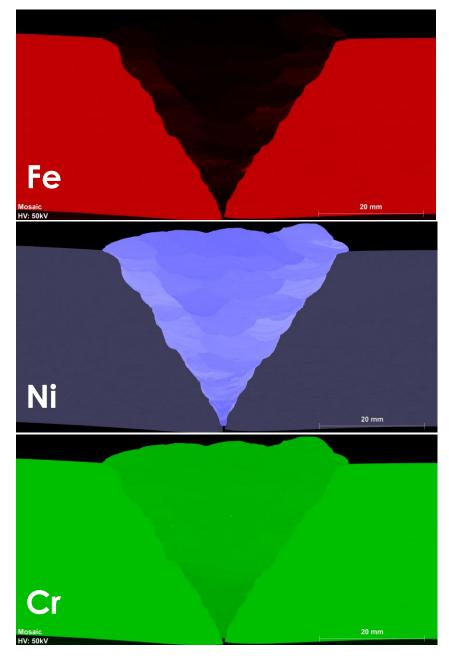
- Hardness measured for different heat treatment (HT) conditions
 - Average solutionized condition: 181 HV
 - Average aged condition: 191 HV
- Short-term creep behavior
 - Tested at 750°C, rupture lives ~200-2000hr
 - Aged conditions fell within scatter of solutionized data
- <u>Relatively insignificant influence of HT on final</u> properties across tested conditions
- Final heat treatment for the remainder of 5th heat: solutionized at 1170°C for 2hr performed at Wyman-Gordon

ID	Average (HV)	Solution Temp (°C)	Solution Time (h)	Ageing Temp (°C)	Ageing Time (h)
ARO	176	As-Receiv	red		
AR1	182	As-Receiv	red	750	8
A1	177	1220	2		
A2	190	1220	2	750	8
A3	183	1220	6		
A4	192	1220	6	750	8
BO	175	1170	2	Air cool	
B1	184	1170	2		
B2	188	1170	2	750	8
B3	185	1170	6		
C1	177	1120	2	750	0
C2	193	1120	2	750	8
C3	182	1120	6	750	0
C4	191	1120	6	750	8
500	<u> </u>			I	
400					
400	- 0				ŀ
300	- 0	-			
300 200	- 0	0 0 0	00000000000000000000000000000000000000		
300	o Soluti	0	00 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09		
300 2000 2000 200 200 200 200 200 200 20	 Soluti Aged 	00	22000		


Comparison of Creep Rupture Databases (Cast vs. Wrought)

Current focus: Fill the creep rupture data gap for wrought CF8C-Plus


CF8C-Plus Pipe Weld


- Pipe weld produced to support ASME code case development
- Base metal: 5th Heat (589832)
- Partial GTAW / partial SMAW fill
 - GTAW (617, ERNiCrCoMo-1)
 - SMAW (117, ENiCrCoMo-1)
 - Enables dual qualification
- Following ASME Section IX weld
 qualification process
- Currently performing side bend and cross-weld tensile testing

CF8C-Plus Pipe Weld (cont.)

Conclusions and Future Work

- Two ASME Code Cases approved for cast CF8C-Plus. Revisions on both code cases are underway to further increase the maximum allowable stress
- CF8C-Plus Extruded pipe
 - Manufacturing of extruded pipe 400 mm OD x 44 mm wall thickness completed
 - Both ingot processing and mechanical extrusion show the alloy is manufacturable
 - Heat treatment optimization completed
 - Solutionizing is relatively insensitive and robust
 - Aging showed negligible effect
- Wrought CF8C-Plus ASME BPVC Code Case application
 - Initiated activities to modify ASTM specifications as a precursor to ASME Code Case
 - Completing mechanical property testing for ASME data package
 - Solutionized extrusions (3x heats) are the focus with forged material (2x heats) data as supplement
 - Time-independent testing to be completed within next 1-2 months
 - Long-term (~10khr) creep rupture testing is the biggest hurdle tests to fill this gap initiated in late 2022

Acknowledgment

- This work is sponsored by the Department of Energy Office of Fossil Energy and Carbon Management Award Number DE-FEAA133
- NETL: Vito Cedro III for the programmatic support
- ORNL: Jeremy Moser, Shane Hawkins, Kelsey Epps, Doug Kyle, and Doug Stringfield for their technical assistance
- EPRI: Scott Bailey for welding support

