

FLUIDIZED-BED GASIFICATION OF COAL-BIOMASS-PLASTICS FOR HYDROGEN PRODUCTION

FOA Number: DE-FOA-0002376

Award No: DEFE0032041

Sushil Adhikari, Tae-Sik Oh, Oladiran Fasina, Ashish Bhattarai, and Ayden Kemp Auburn University David C. Dayton and Pradeepkumar Sharma RTI International Email: sza0016@auburn.edu (S. Adhikari)

RESEARCH OBJECTIVES

- The <u>main objective</u> of this research is to examine the gasification performance of coal, waste plastics, and southern pine mixture in a laboratory-scale fluidized-bed gasifier for the hydrogen production.
- Specific objectives:
 - 1. coal-plastic-biomass mixture flowability
 - 2. <u>gasification behavior</u> of the mixtures for hydrogen production
 - 3. characterization of <u>ash/slag and interaction</u> between slag/ash and refractory materials; and
 - 4. process model(s) for <u>hydrogen production cost</u>.

OBJECTIVE 1

- This objective is focused on understanding the flow behavior of the mixture at various proportions.
- The <u>expected outcome</u> of this objective is that we will be able to <u>understand</u> if three feedstocks can be blended for consistent feeding or not. The study will also highlight the <u>associated challenges</u> (if any) of feeding feedstock blends in the gasifier.

SAMPLE PREPARATION

PREPARATION OF PLASTIC SAMPLES

□ The plastic samples were shredded using a plastic shredder, sieved and ground using cryogenic grinder for many analyses.

DENSITY^a AND FLOWABILITY

	Bulk Density,	Tap Density,	Particle Density,	Flowability
Name	kg/m ³	kg/m ³	kg/m ³	(Flow Index)
#1 PET	358	458	1369	Easy Flowing
#2 HDPE	323	398	953	Easy Flowing
#3 PVC	596	681	1416	Easy Flowing
#4 LDPE	87	210	1157	Cohesive
#5 PP (Food cups)	308	374	909	Easy Flowing
#6 PS (Styrofoam)	43	53	1026	Cohesive
#6 PS (Cutlery)	421	499	1065	Easy Flowing
#7 Others	471	551	1194	Easy Flowing
Coal (AL Co-Op)	691	1035	1423	Cohesive
Biomass	231	284	1461	Cohesive
Mixed Plastics	475	550	1107	Easy Flowing

^aCoefficient of variation is less than 5%

PARTICLE DENSITY OF MIXTURES

$$\rho_{pm} = \sum_{i=1}^{3} x_i \rho_{pi}$$

Percent relative deviation (%RE)

• Average: 1.47%

1

• Range: -3.44% to 4.55%

 $\% RE = 100x \frac{measured - predicted}{measured}$

Note:

٠

- x_i is mass fraction
- Density of plastics was obtained from the above equation
- ρ_p is particle density (kg/m³)

Particle density of mixtures from samples screened through 2-4 mm sieves

BULK DENSITY OF MIXTURES

Bulk density of mixtures from samples screened through 2-4 mm sieves

 $\frac{1}{\rho_{bm}} = \sum_{i=1}^{3} \frac{x_i}{\rho_{bi}}$

Percent relative deviation (%RE)

- Average: 12.44%
- Range: -6.57% to 22.69%

- *x_i* is volume fraction
- Density of plastics was obtained from the above equation
- ρ_b is bulk density (kg/m³)

BULK AND PARTICLE DENSITY

Densities of plastics in plastic blends used for biomass/coal/plastic mixtures

SEGREGATION TESTING

- Developed according to ASTM D6490 Standard
- Apparatus was not suitable for mixtures
- Need samples with less than 300 microns even though standard mentioned maximum particle size limited to 3 mm
- Visual observation show that mixtures will likely not segregate

OBJECTIVE 2

- The objective is focused on feedstock reactivity and laboratory-scale fluidized bed gasification to determine the syngas composition and contaminants under steam and oxygen gasification conditions.
- The **expected outcome** of this is to have better understanding about the <u>reactivity</u> of the mixture and also how <u>syngas composition</u> and contaminants are being impacted by various mixtures.

PROXIMATE ANALYSIS

Component	Ash [d h wt %]	Moisture [w.b.,	Volatile Matter
component	ASII [0.0., Wt.76]	vv/oj	[[[],],],]]
#1 PET	0.38	0.25	94.03
#2 HDPE	0.03	0.13	97.12
#3 PVC	6.20	0.11	88.42
#4 LDPE	24.32	0.37	74.66
#5 PP	0.27	0.05	96.21
#6 PS (Utensils)	0.02	0.45	96.35
#6 PS (Styrofoam)	0.08	0.44	98.16
#7 Others	3.09	0.17	94.20
Biomass (Southern pine)	1.51	4.40	76.37
Lignite coal	28.28	0.57	35.44

✤ Among the samples, LPDE (#4) and coal samples showed the highest ash content.

CALORIFIC VALUE

Component	Plastic Composition in MSW [%]	Heating Value[MJ/kg] (Btu/lbm)
PET	40%	22.98 (9,880)
HDPE	18%	46.31 (19,909)
PVC	6%	14.52 (6,242)
LDPE	18%	34.52 (14,841)
PP	2%	45.36 (19,501)
Polystyrene (Utensils)	8.40%	40.87 (17,571)
Polystyrene (Styrofoam)	3.60%	41.63 (17,897)
Other plastics	4%	35.69 (15,344)
Mixed plastics		31.94 (13,731)
Biomass (Southern Pine)		18.92 (8,134)
Coal		29.95 (12,876)

✤ Among all the samples, PVC (#3) has the lowest heating value.

ULTIMATE ANALYSIS

					2
Component	N [wt.%]	C [%]	H [%]	S [%]	CI [%]
#1 PET	N.D.	61.32	4.15	0.16	N.D.
#2 HDPE	N.D.	82.54	14.96	0.08	N.D.
#3 PVC	0.06	38.86	5.24	0.59	43.7
#4 LDPE	N.D.	67.91	11.40	0.16	0.105
#5 PP	N.D.	82.60	14.96	0.06	N.D.
#7 Others	0.35	73.75	11.02	0.04	0.093
Mixed plastics	0.0	74.68	8.38	0.08	1.55
Biomass (Southern pine)	0.01	49.67	8.22	0.03	0.007
Coal	1.57	66.59	4.09	1.16	0.015

N.D.: Not Determined or Not Detected

ASH FUSION TEMP (REDUCING ATMOSPHERE)

Component	Initial Temp. °F (°C)	Softening Temp. °F	Hemispherical Temp. °F	Fluid Temp. ºF
#3 PVC	2247 (1230)	2390	2422	2460
#4 LDPE	+2700 (1482)	+2700	+2700	+2700
#7 Others	2303 (1261)	2307	2319	2324
Mixed plastics	2610 (1432)	2616	2621	2623
Biomass (Southern pine)	2105 (1151)	2126	2132	2145
Coal	2349 (1287)	2390	2397	2420

✤ Ash fusion temperature is higher than 1150 °C; we do not anticipate of slagging during gasification runs in our set-up.

- Decomposition starts ~280 °C and completes ~ 500 °C.
- Blend 4 showed the lowest activation energy.

EXPERIMENTAL SETUP (GASIFICATION)

Figure. Experimental setup **1**. Hopper, **2**. injection screw, **3**. heat exchanger, **4**. heaters, **5**. fluidized bed gasifier, **6**. filter heaters, **7**. high temperature filter, **8**. impingers for tar sampling, **9**. condensers, **10**. ESP, **11**. primary gas analyzer, **12**. FTIR gas analyzer and **13**. FPD GC

SYNGAS COMPOSITION (NITROGEN FREE BASIS)

Sample	H ₂ (vol.%)	CO (vol.%)	CO ₂ (vol.%)	CH4 (vol.%)	C2-C3 (vol.%)	H ₂ /CO
Plastic	51.86	29.79	12.83	4.62	0.85	1.74
Pine	41.43	31.84	14.47	7.28	4.85	1.30
Coal	49.18	25.26	21.20	4.02	0.32	1.95
Blend1	44.16	28.1	22.16	4.96	0.6	1.57
Blend2	44.99	29.02	19.70	5.71	0.57	1.55
Blend3	42.26	29.02	22.44	5.47	0.75	1.46
Blend4	43.45	28.46	19.46	7.30	1.31	1.53
Blend5	47.11	27.05	19.83	5.81	0.18	1.74
Blend6	47.14	26.75	18.24	7.46	0.37	1.76
Blend7	45.84	29.29	16.17	7.91	0.79	1.57
Blend8	45.60	29.99	16.03	7.62	0.75	1.52
Blend9	47.02	29.52	15.86	7.17	0.41	1.59
Blend10	45.53	30.42	15.99	7.46	0.59	1.50

Gasification Conditions

Bed Temperature (°C)	s/c	ER
920 - 970	3	0.2

FEEDSTOCK C VS HYDROGEN COMPOSITION

OBJECTIVE 3

- The goal is to determine the slagging behavior of the mixtures. We will also determine the thermal conductivity of ash/slag, and flow property of slag at various temperatures.
- The **expected outcome** of this study is that we will understand how ash/slag properties are different when the mixture is gasified as compared to individual feedstocks.

ASH MELTING AND SLAG SOLIDIFICATION KINETICS

Method 1: Slow cooling.

1400 100 ~ 1500 °C Pt 1200 Temperature (°C) 90 Pt-Rh Pt 1000 ΔT, T₁-T₂ (°C) 80 **Re-solidification** 800 70 600 60 Al₂O₃ crucible **Re-solidification** 400 Furnace starts 50 200 40 0 Solid-state reactions? 30 100 200 300 400 0 2 10 12 6 8 4 Time (s) Cooling time (h) Quenching of slag samples in progress.

2.4 °C/min cooling of molten coal slag.

Method 2: quenching (induction heater).

Quenching of molten NaCl in graphite crucible.

THERMAL CONDUCTIVITY MEASUREMENT

Figure 1. a) The wire temperature rise normalized by heat per wire unit length plotted against logarithmic time. Slope $\sim 1/k$. b) High temperature thermal conductivity values of three different ashes.

SLAG-REFRACTORY INTERFACE STUDY

Ash melting on the alumina surface.

SLAG-REFRACTORY INTERFACE STUDY (CONTD.)

Plastic ash behaves very differently from alumina on MgO and yttria-stabilized zirconia.

All molten slags moved in and filled the 0.5 mm slit on alumina.

MgO-contacted plastic ash disc YSZ-contacted plastic ash disc }

Both made corrosion dents on alumina (1500 °C, 5 h).

OBJECTIVE 4

- This study will inform researchers about the <u>capital</u> <u>and operating costs</u> of hydrogen production from selected wastes. The model will also compare various technologies that have shown promises for gas cleanup and conditioning with base case.
- The <u>expected outcome</u> of this study is that we will able to understand the cost of producing hydrogen and required process units.

PROCESS MODELING- GOALS, APPROACH & UPDATE

Develop process models to determine technologies needed for hydrogen production from coal, biomass and waste plastics gasification

Plant Case-based Approach

- A base-case plant is developed using the state-of-the-art technologies for gas cleanup, conditioning and hydrogen purification
- An advanced-case plant is developed using RTI's emerging advanced syngas cleanup and conditioning technologies that provide process and economic benefits over conventional technologies

Process Modeling Task Update

- Base Plant: Process modeling and cost estimation has been completed
- Advance Plant: Process modeling and cost estimation will be completed based on the gasifier performance data collected at Auburn University

BASE CASE PLANT PERFORMANCE AND CAPITAL COST ESTIMATION

Plant Performance

- > Plant Capacity: 2000 tpd of PRB coal is processed in oxygen-blown Shell gasifier.
- Produces 159,548 kg/day of hydrogen.
- Sour WGS process adjusts syngas composition to produce H₂-rich stream and performs COS hydrolysis.
- Gas Cleaning removes contaminants, such as HCl, mercury using disposable sorbent fixed-beds.
- Dual-Stage Selexol[®] removes acid gases- H₂S in first stage and CO₂ in second stage. 3,338 tons/day of CO₂ is captured. Captured CO₂ is compressed to approximately 2,215 psia and sequestered.
- PSA can achieve >99.99 vol% hydrogen purity.

Capital Cost Estimation

Total overnight cost for the base plant was estimated to be \$1,001 Mil.

Advanced Case Plant Using Emerging Technologies

- > Advanced Plant processes 2000 tpd of coal/biomass/plastic mixture as feedstock to produce hydrogen.
- Process Models for RTI's Emerging Syngas Cleanup and Conditioning Technologies have been completed
 - RTI's commercially available WDP process uses regenerable ZnO-based sorbent, lowers footprint and capital cost
 - \circ RTI's advanced WGS process lowers steam consumption and provides capex reduction
 - Trace contaminants are removed in modular fixed-bed reactors using efficient adsorbents at elevated temperatures
 - \circ Advanced $\rm CO_2$ capture technologies using Activated MDEA reduces capital cost

Sasifier performance data being collected at Auburn University will be incorporated into process models

Emerging Technologies will improve Net Energy Efficiency and lower Cost of Hydrogen Production

PROJECT SCHEDULE

	3 month	6 month	9 month	12 month	15 month	18 month	21 month	24 month	27 month	31 month
Tasks/Milestones	Year 1			Year 2				Year 3		
Obj. 1: Study coal-plastic-biomass mixture flowability										
Task 2: Prepare 3 pure and 12 blended samples for the study	SA, GRA1				M 3					
Task 3: Complete flow properties such as flow index, cohesive strength, Hausner ratio, tag		OF, O	GRA2							
Task 3: Complete fluidization segregation and sifting segregation measurements.							OF, GRA2			
									•	
Obj. 2: Understand gasification behavior of the mixtures										
Task 2: Complete proximate, ultimate, heating value and ash analyses of 15 samples		SA, (GRA1		M 2					
Task 4: Complete TGA experiments for 15 samples and calculate activation energy and th				SA, GRA1						
Task 5: Complete gasification of 3 pure samples.				SA, GRA1						M 4
Task 5: Complete gasification of remaining 12 samples.								SA, GRA1		
Obj. 3: Perform thermal property characterization of ash/slag										
Task 6.1 & 6.2: Reliable thermal conductivity data of ash and slag	TSO, GRA3									
Task 6.3: Slag composition-flow characteristics relationship.	TSO, GRA3									
Task 6.4: Identification of the best Cr-free refractory based on Al2O3, ZrO2, and MgO			TSO, GRA3					M 5		
Task 6.5: Estimation of the impact of the refractory surface pore structure								TSO, GRA3	1	
Obj. 4: Develop process models for hydrogen production					1	1	1	1	1	1
Task 7: A base-case ASPEN process model.										
Task 7: Updated ASPEN process model		PS,	RTI		М 6					M 7
						1	PS,	RTI	1	
Project Management										
Project SOPO and PMP Update		M 1								
Project Kickoff Meeting										
Quarterly Progress Report										
Annual and Final Report										М 8

Note: M = Milestone SA: Sushil Adhikari OF: Oladiran Fasina TSO: Tae-Sik Oh PS, RTI: Pradeep Sharma, RTI GRA: Graduate Research Assistance

ACKNOWLEDGMENTS

- Richard Dalton, NETL Program Manager
- DOE-FECM and NETL
- Alabama Power
- Biosystems Engineering Department Staff
 - ✤ James Johnson
 - Caroline Whiting
 - Bobby Bradford

THANK YOU!

