

FE0032192 - Carbon Capture on Air Liquide US Gulf Coast Steam Methane Reformer using Cryocap[™] FG Process

NETL Presentation

August 2023

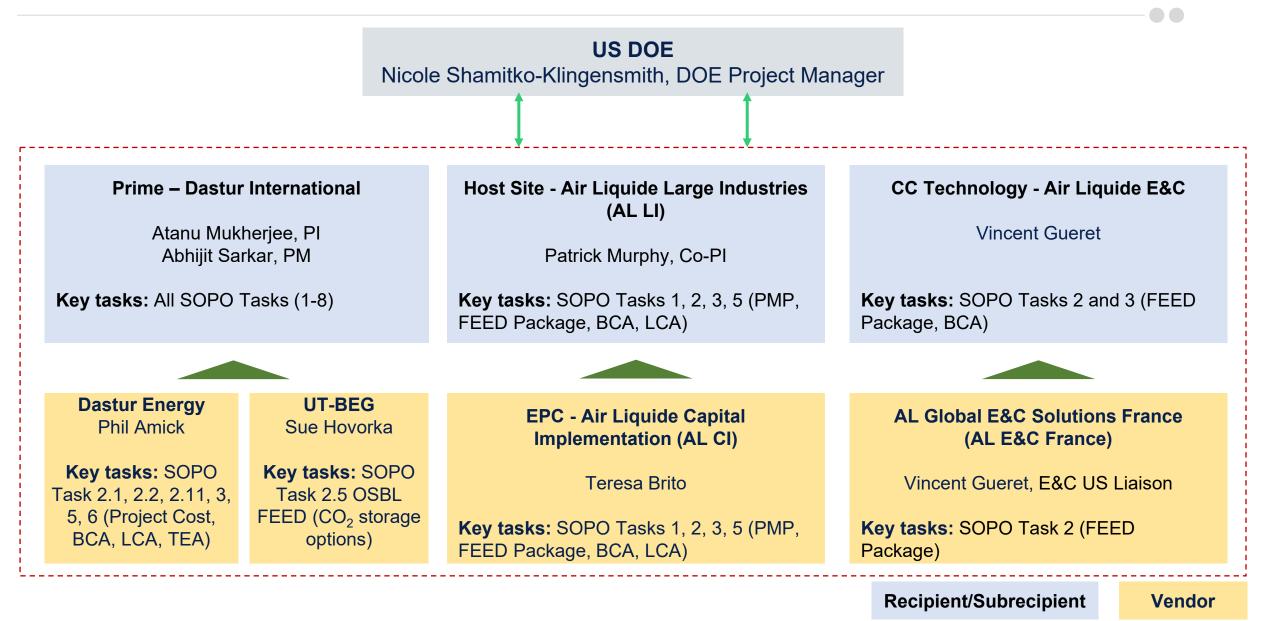
FE0032192 - Carbon Capture on Air Liquide US Gulf Coast Steam Methane Reformer using Cryocap™ FG Process

a. Acknowledgment:

This material is based upon work supported by the Department of Energy under Award Number DE-FE0032192.

b. Disclaimer:

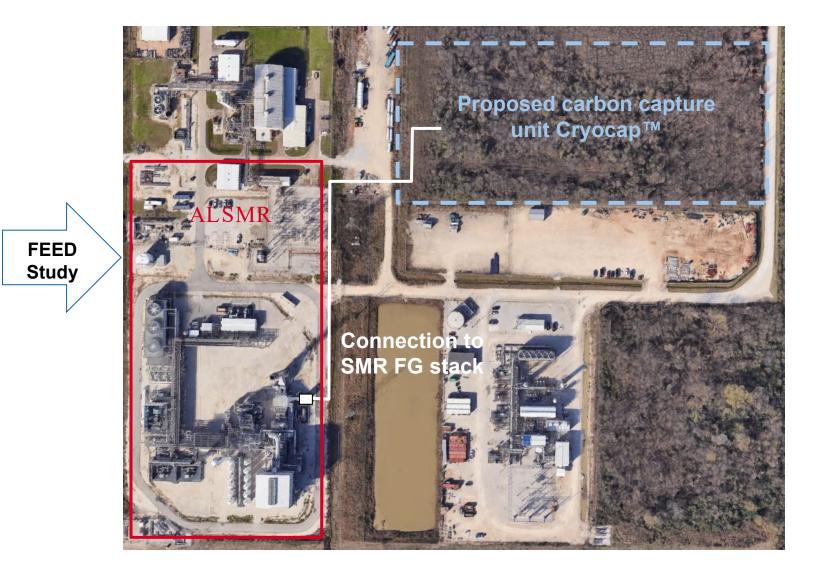
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

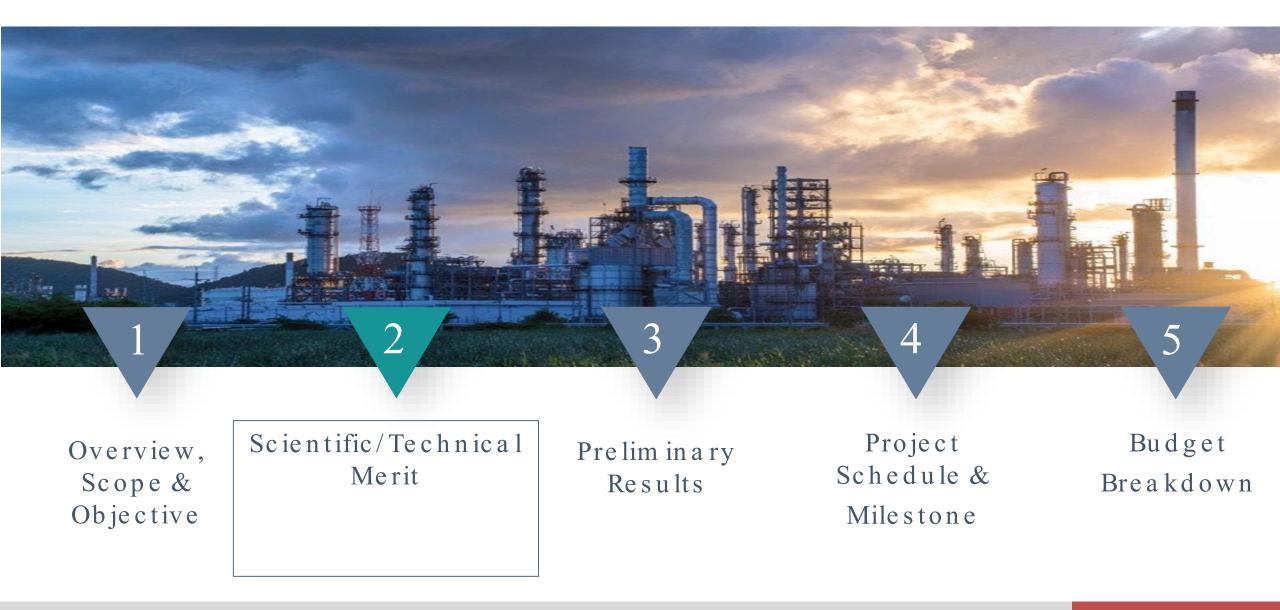


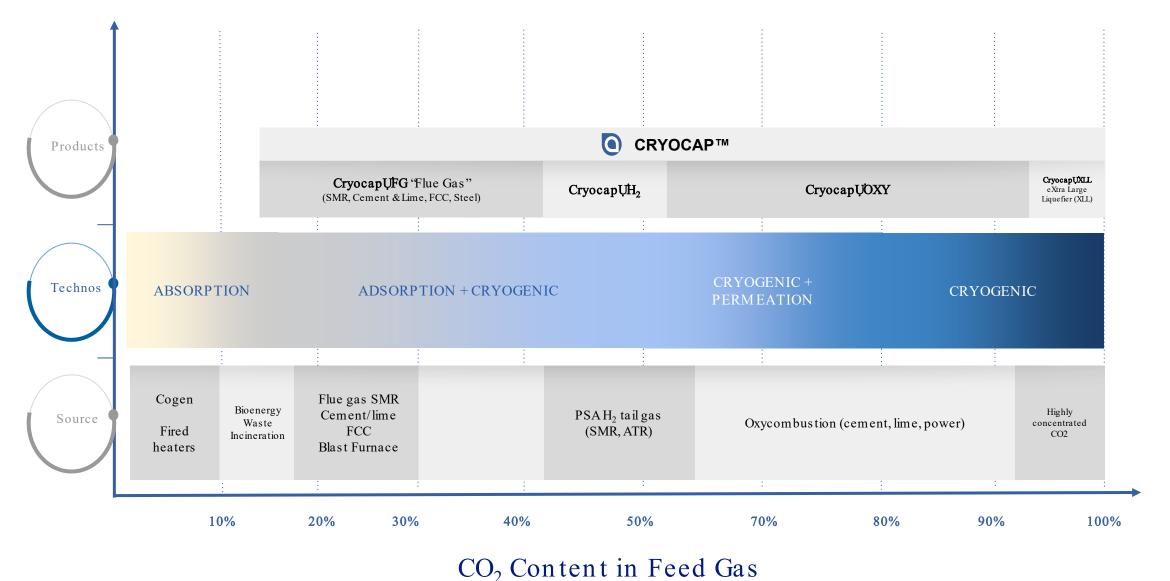
Project Team and Key People

Background and Objectives of the FEED Study

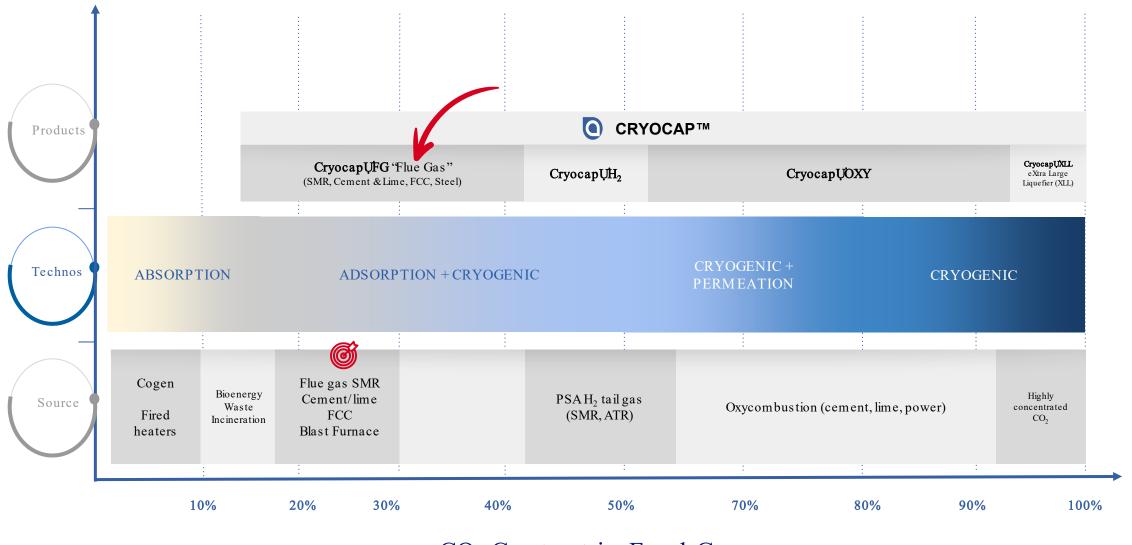
- <u>Host Site</u>
 - Air Liquide owned and operated Steam Methane Reformer (SMR) located in La Porte, TX
 - World Scale SMR supplying H₂ to US Gulf Coast industrial customers as part of Air Liquide's Gulf Coast Hydrogen Pipeline network
 - The La Porte SMR produces approximately 950 ktpy CO_2
 - Favorable regional geology for CO₂ sequestration with high density of 3rd party emission sources supporting market development and offerings for storage solutions
- <u>Technical objective of the FEED Study</u>
 - Capture 900 ktpy CO₂ (95%⁺ C capture efficiency)
 - Based on Air Liquide's **Cryocap™** technology:



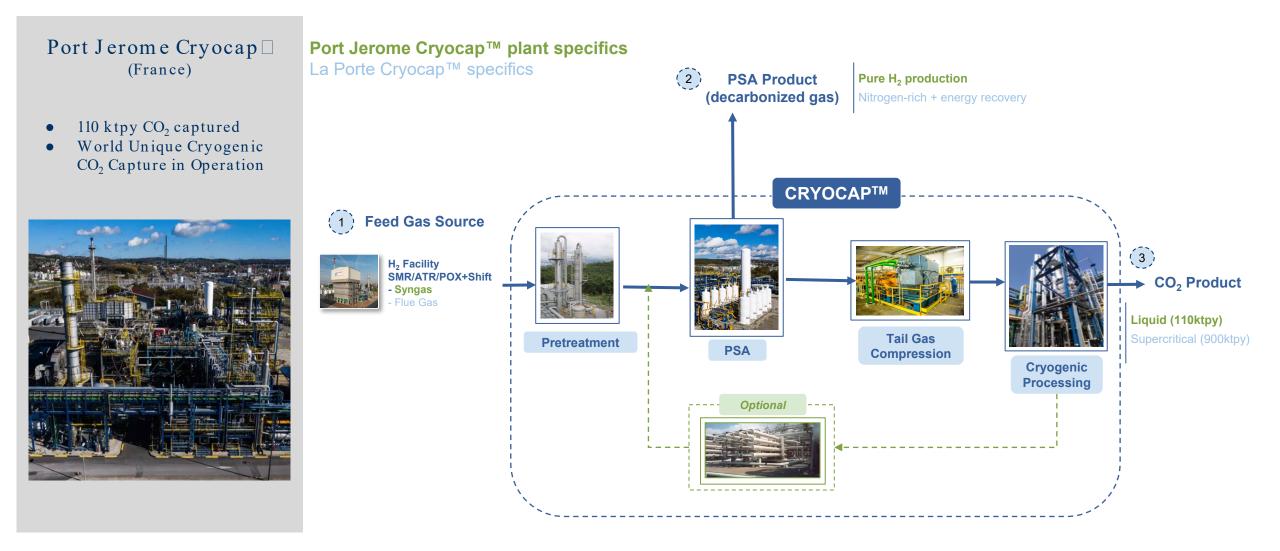




- **Design** of a commercial scale carbon capture plant: Engineering Design Package, HAZOP, Electricity Sourcing and Waste Disposal Study, Constructability Review
- Capital cost estimate (AACE Class 3)
- Techno Economic Analysis for the carbon capture project
- **Assessments:** Business Case, Life Cycle, EH&S, EJ Questionnaire, Economic Revitalization & Job Creation Questionnaire

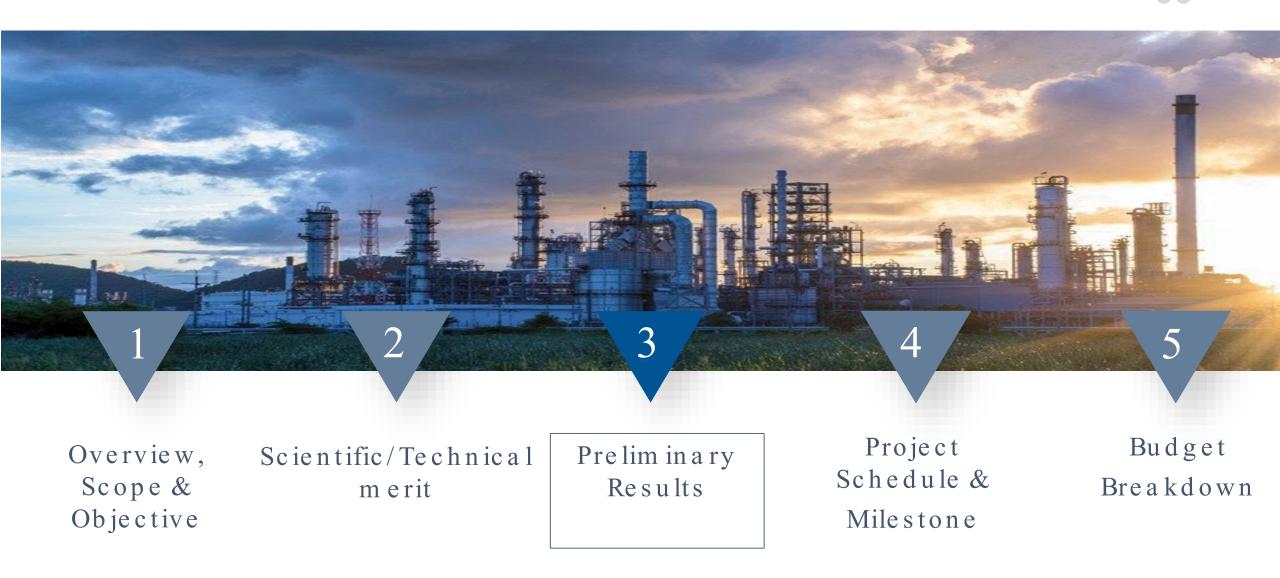


Cryocap[™] Technology and Development



Cryocap[™] Technology and Development

CO₂ Content in Feed Gas


Cryocap[™] & Commercial Demonstration Plant Overview (Port Jerome)

- **1. Technology** leveraging Air Liquide's experience in **integrating and operating** process solutions utilizing referenced technology bricks such as compression, PSA and cryogenic separation
- 1. Environmentally sustainable, as the main utility is electricity (leading to very low carbon intensity when renewable power is used) and the process does not use any chemicals or flammables (expect caustic soda or equivalent for the pre-treatment). No large amount of heat required like amine wash.
- 1. Limited amount of integration with the SMR, which reduces the potential disruption of SMR operation and associated risks
- 1. Pressurized and clean CO₂ exiting the cryogenic section, allowing to reduce significantly the CAPEX/OPEX required for the product CO₂ compression vs amine based system

- **Design Basis**: preliminary version completed, to be potentially updated based on upcoming gas testing
- Site Data Sheet: preliminary version completed
- Technology Maturity Plan: preliminary version completed
- Solution Development: core separation process of Cryocap[™] frozen
- Interface with SMR: preliminary review + site visit
- Next steps:
 - \circ **PFDs**
 - Heat & Mass Balance
 - Process Data Sheets

	Air	Lia	uid	е	Ē
C		цЧ	uiu	C	

Stream	Unit	SMR Flue Gas							
Temperature	°F	~170							
Pressure	psig	atmospheric							
State	-	Vapor							
Molar Flow ⁽¹⁾	Nm³/h	~287910							
Composition ⁽³⁾									
CO ₂	mol%	19.193							
H ₂ O	mol%	19.114							
N ₂	mol%	59.787							
0 ₂	mol%	1.186							
Ar	mol%	0.713							
H ₂	ppm mol	~60							

Notes:

(1) Not including any potential air ingress from the flue gas stack/duct.

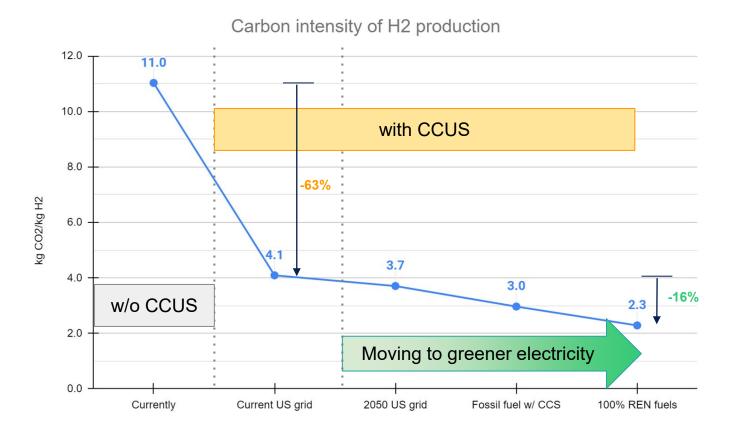
(2) Additional air flow on top of the indicated Flue Gas Molar Flow will be considered to model air ingress in the flue gas duct. This additional flow will be determined during the execution of the FEED.

(3) Balance of the composition is composed of the impurities below:

- CO: 20 ppm mol dry @ 3% O₂
- NOx: 5 ppm mol dry @ 3% O₂
- SOx: 1 ppm mol dry @ 3% O₂
- NH₃: 10 ppm mol dry @ 3% O₂
- VOCs: 3 ppm mol dry @ 3% O₂
- Particulate Matter: 5 mg/Nm3 @ 3% O₂

Stream	Unit	CO ₂ Product						
Temperature	°F	< 100						
Pressure	psig	1330 to 2350						
Composition								
Carbon Dioxide	vol%	> 97 (dry basis)						
Hydrogen Sulfide	ppm wt	< 10 ppm						
Total Sulfur	ppm wt	< 30 ppm						
Methane	vol%	< 3						
Ethane plus	vol %	< 1						
Oxygen	ppm wt	< 10						
Glycol	gallons per MMCF	< 0.3						
Carbon Monoxide	ppm wt	< 4250						
NOx	ppm wt	< 1						
SOx	ppm wt	< 1						
Particulates	ppm wt	< 1						
Amines	ppm wt	< 1						
Hydrogen	vol%	< 1 v						
Mercury	ng/l	< 5						
Ammonia	ppm wt	< 50						
Inerts (incl. N ₂ and Ar)	vol%	< 0.5						
Liquids	-	(1)						
Compressor Lube Oil Carry Over	-	(2)						
Water Vapor	lbs/MMCF	< 30						

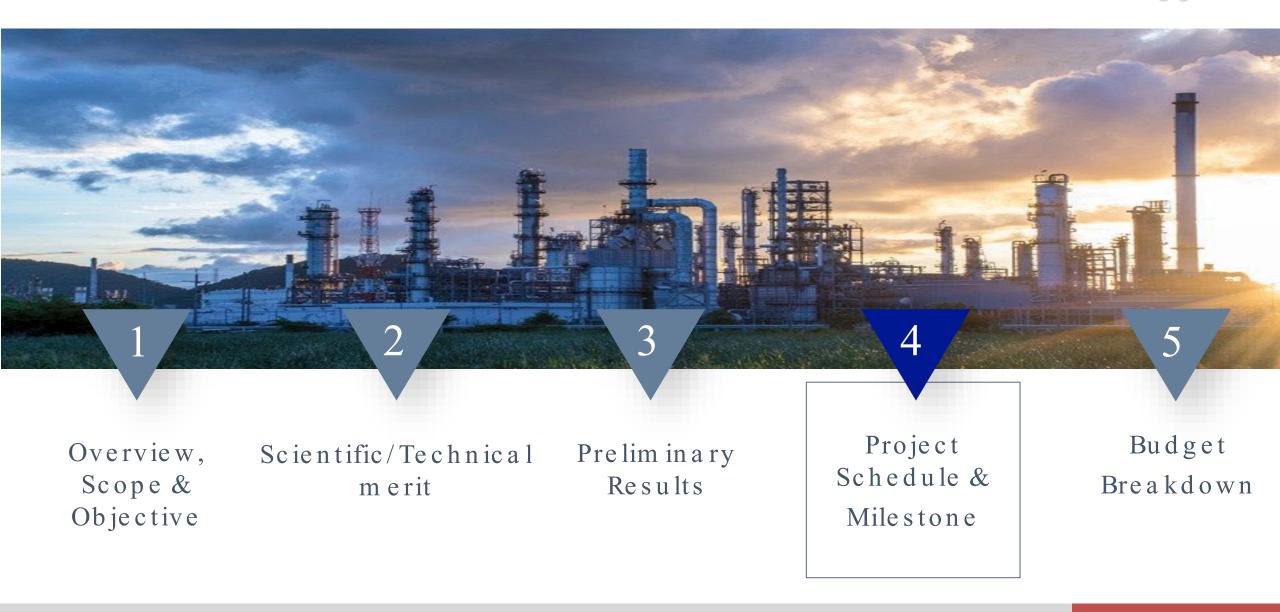
Notes:


(1) Product shall be free of liquids at delivery conditions and shall not produce condensed liquids in the pipeline at pipeline pressure and temperature.

Air Liquide

(2) Not more than 50 ppm by weight and shall not cause fouling of pipeline, pipeline equipment downstream systems or reservoirs.

Preliminary Results – from Application Stage


- Key advantage of Cryocap[™] FG technology main utility consumption is electricity which can be supplied from RE
- With progressive greening of US electricity grid, life cycle CO₂ emissions can reduce from 11 kg CO₂/kg of H₂ (w/o CCUS) down to 2.3 kg/kg

Notes:

- Life cycle CO₂e emission estimated considering 1.4% leakage of Methane of total usage in the SMR and 100-year GWP value of 36 as per AR5 (IPCC 2013)
- Current U.S grid mix: 546 kg CO₂e/MWh
- 2050 U.S grid mix (EIA-AEO): 434 kg CO₂e/MWh
- Fossil power with CCS (50% coal and 50° NG with CCS): 220 kg CO₂e/MWh
- 100% Renewables (50% solar PV and 50% wind): 23 kg CO₂e/MWh

Updates to the Project Management Plan (PMP)

- 1. Project organization structure updated to indicate organization wise tasks and activities in the project
- 1. Workplan updated (shown in subsequent pages) and milestones added on % of engineering completed
- 1. Key team members updated
- 1. Project budget updated
- 1. Project success criteria updated
 - a) Completion of the study as per the scope, budget, and schedule and development of AACE Class 3 capex estimates
 - a) Engineering design and solution for 95% CO_2 capture with 95% purity and 99.97% H₂ purity at competitive costs
 - i) 0.9 mtpa of carbon capture
 - ii) Meeting capital cost, CO₂ capture cost and LCOH targets
 - iii) Minimal disruptions to exist plant operation and hydrogen production
 - a) Engineering design package and techno-economic analysis that demonstrates that carbon capture can be implemented at the Host Site to achieve the following metrics:
 - a) Acceptance of the study deliverables and reports by DOE

Updated Project Work Plan (1/2)

			DOE	FOA	4-240	0 A 0	I 8a_													
	F	EED Study for Carbon Capture on Air Liquide	US G	ulf C	loast	Stean	n Met	hane	Ref	orm	er U	sing	; the	Cry	ocap	TM]	FG I	Proc	ess	
						20	23					_				2024				
Гask No.	Sub Task	Task/Deliverable Description	Apr	May	Jun	Jul Au	ıg Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct No
. 0		Project Management and Planning										0		1			1			
		Project Team Kick-off Meeting																		
	1.1	Project Management Plan (PMP)		_																
		Updated PMP		D																
		Milestone: DoE Kickoff Meeting			MK	ЮМ														
		Technology Maturation Plan (TMP)		<u> </u>		I														
	1.3	Workforce Readiness Plan				_														
		Initial WRP				I														
.0		Front-End Engineering Design (FEED) Package										1						1		
		Project Scope and Design																		
		Project Design Basis																		
	2.3	Preliminary Engineering																		
		Milestone: 20% of FEED Package Complete									M	20%)							
		Preliminary Engineering Package									D									
	2.4	ISBL/Carbon Capture System Engineering Design Package																		
	2.5	OSBL/Balance of Plant Engineering Design Package																		
		HAZOP Review																		
	2.7	Constructability Review																		
		Milestone: 60% of FEED Package Complete														Μ	60%			
		HAZOP & Constructability Review Complete														D				
	2.8	Permitting Study and Review																		
	2.9	Electricity Sourcing Study																		
	2.10	Emissions and Waste Disposal Study												0						
		Milestone: 70% of FEED Package complete															Μ	70%		
		Studies & Investigations Reports															D			
	2.11	Cost Assessment																		
		Milestone: 100% of FEED Package complete																Μ	100%	6
		Project Cost Estimate																D		

FE0032192 - Carbon Capture on Air Liquide US Gulf Coast Steam Methane Reformer using Cryocap[™] FG Process

Project Work Plan (2/2)

			DOF	FO	1_24			89												_	· ·	
DOE FOA-2400 AOI 8a FEED Study for Carbon Capture on Air Liquide US Gulf Coast Steam Methane Reformer Using the Cryocap TM FG Process																						
							2023								_		2024				_	
ſask No.	Sub Task	Task/Deliverable Description	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct No	ov
3.0	1	Business Case Analysis (BCA)																				
	3.1	Business Case Analysis													ļ							
	3.2	Technical Overview																				
	3.3	Market Analysis																				
	3.4	Future Deployment Projection																				
	3.5	Quantification of Benefits																				
4.0		EH&S Analysis																				
5.0		Life Cycle Analysis (LCA)																				
5.0		Techno-Economic Analysis (TEA)																				
	6.1	System Boundaries																				
	6.2	Process Design Assumptions																				
	6.3	Process Flow Diagram & Material Energy Balances																				
	6.4	Calculated Output from Analysis																				
	_	Milestone: 100% of TEA complete																	Μ	TEA	comple	te
		BCA, EH&S, LCA and TEA																	D			
7.0		Environmental Justice Analysis																				
8.0		Economic Revitalization and Job Creation Outcomes Analysis																				
		Environmental Justice, Economic Revitalization and Job																			D	þ
		Milestone: Study Complete & Final Report Submission															FE	ED s	tudy	com	plete M	1

Total project budget	Total budget	Share
Federal share	US\$ 5,994,689	80%
Non-federal share	US\$ 1,499,303	20%
Total	US\$ 7,493,992	100%

Cost type	Apr 2023 – Jul 2023	Share	Remaining budget	% Remaining
Federal share	US\$ 184,688	100%	US\$ 5,810,001	98%
Non-federal share	0	0%	US\$ 1,499,303	100%
Total	US\$ 184,688 ¹	100%	US\$ 7,309,304	97%

Note 1: Additional invoices expected to bring this number by end August to US\$ 1,083,625 with US\$ 216,725 as 20% non-federal cost share contributed

Air Liquide

D

Abhijit Sarkar Project Manager

abhijit.sr@dastur.com +1 (415) 216-8660