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• Design decisions are always subject to technical risk
– incomplete “science” (e.g., uncertainty around material properties)
– use of simplified models (for tractability)

• Practitioners compensate by over-designing (often “ad-hoc”)
• Designing plants with operational flexibility can help with robustness
• Need advanced design frameworks that factor in our “knowledge” of uncertainty

– Interaction with “knowledge gathering” from pilot tests

Outline
• Present our computational framework for risk-averse process design
• Cover advances in Robust Nonlinear Optimization (CMU)
• Cover advances in Science-Based Design of Experiments (ND)

Introduction
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Degrees of Freedom:
● Column length (L) 
● Column diameter (D)
● Solvent recirculation rate (F)

○ adjustable during operation

MEA-based CO2 Absorption Column Model

Minimize:
● Proxy cost objective combining column size 

(CAPEX) and MEA flowrate (OPEX)

Subject to:
● Process equality constraints

○ thermodynamic and transport equations
● Sizing constraints

○ bounds on the L/D ratio (1.2–30 used)
● Performance constraints

○ CO2 capture rate requirement
○ Flooding fraction bound constraints

(simplified after rigorous analysis)

~5,000 
variables and 
constraints



MEA Absorption Column Model –
Deterministic Solutions

● Deterministic optimization can be used to obtain minimal cost designs for different levels of capture

% Capture 
Requirement

Cost

85.0 13.69

87.5 14.00

90.0 14.32

92.5 14.70

95.0 15.21

97.0 16.06

• Model predicts 
max possible 
capture of 98.2%
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Parameter Estimation and UQ
in MEA Absorption Property Models

(Anca Ostace, Alex Dowling, Joshua Morgan)

VLE Density Viscosity Surface Tension

Uncertainty Characterization: 
Used parmest[1] to identify 
point estimates and 
covariances in:
• vapor-liquid equilibrium,  
• solution density, 
• viscosity, and 
• surface tension 

parameters.

Main takeaways:
(1) Uncertainty most pronounced 

in VLE parameters
(2) Prediction from property 

models is not very sensitive to 
the remaining parameters

Model predictions (200 parameter realizations, transparent lines) vs. experimental data (symbols)

Propagation through absorption column model:

[1] Klise, Nicholson, Staid, Woodruff. Computer Aided 
Chemical Engineering, 47 (2019): 41-46.



MEA Absorption Column Model –
Robustness of Deterministic Model Solutions

● Deterministic optimization can be used to obtain minimal cost designs for different levels of capture

● Considering only nominal property values leads to non-robust designs

% Capture 
Requirement

Cost # Scenarios Feasible
(out of 200)

85.0 13.69 81

87.5 14.00 75

90.0 14.32 83

92.5 14.70 87

95.0 15.21 82

97.0 16.06 82 Example uncertainty set
(6D set used in this study)



MEA Absorption Column Model –
Performance in Light of Altered Capture Targets

● Non-robust designs are less likely to adapt to increased capture targets

● A significant level of over-design required to establish guarantees

% Capture 
Requirement 
during 
Design

Cost # Scenarios Feasible (out of 200) subject 
to Off-Spec % Capture Requirement

85.0 87.5 90.0 92.5 95.0 97.0

85.0 13.69 81 8 0 0 0 0

87.5 14.00 143 75 10 0 0 0

90.0 14.32 180 136 83 23 0 0

92.5 14.70 189 170 132 87 26 3

95.0 15.21 190 186 166 132 82 45

97.0 16.06 189 185 184 172 127 82

Nominally 
optimal for 
increasing 
% capture

Evaluating 
robustness for 

increasing 
capture rate 
requirement
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Nonlinear Optimization Under Uncertainty

GIVEN
● Deterministic model

● e.g., IDAES flowsheet model
● Degree-of-freedom partitioning into 

1st-stage and 2nd-stage
● Quantification of uncertainty in form 

of uncertainty set 
● e.g., 95% confidence ellipsoid

DETERMINE
● System design that is guaranteed to 

remain feasible under all scenarios
● Accompanying control policy to perform 

any operating adjustments needed 
for system to achieve feasibility

● Optimality in light of a combined 
economic objective (CapEx+OpEx) 

Two-Stage Decision-Making Framework

Commit upon 
design decisions 
(1st-stage DOFs)

Observe uncertain 
parameters 

(directly or via 
system response)

Adjust system via 
control actions
(2nd-stage DOFs)

Two-Stage Robust Optimization-Based Design Capability

(Jason Sherman, John Siirola, Chrysanthos Gounaris)



PyROS: a Pyomo Robust Optimization Solver
(Step 0) Build a deterministic Pyomo model

(Step 1) Define other required inputs

(Step 3) Invoke PyROS as a Pyomo Solver

(Step 2) Construct the uncertainty set

https://pyomo.readthedocs.io/en/stable/contributed_packages/pyros.html

https://pyomo.readthedocs.io/en/stable/contributed_packages/pyros.html


MEA Absorption Column Model –
PyROS Results

In all cases, 4-5 PyROS iterations (~10 min. wall time) required
○ average deterministic solve time ~3 sec.

Minimum 
Capture 
Rate (%)

Robust Column Proxy Cost and DOF (L, D, F) Values [m, m, kmol/s] 
for different Confidence Levels

0% (deterministic) 90% 95% 99%

90.0 14.32
(18.33, 15.28, 14.45)

17.19
(25.09, 15.51, 17.08)

17.30
(26.43, 15.52, 17.29)

17.75
(29.24, 15.55, 17.76)

92.5 14.70
(18.40, 15.33, 15.04)

18.05
(27.94, 15.54, 17.62)

18.48
(29.50, 15.56, 17.85)

19.40
(32.81, 15.59, 18.33)

95.0 15.21
(18.49, 15.41, 15.87)

19.37
(33.17, 15.58, 18.17)

19.92
(35.33, 15.60, 18.40)

21.14
(40.22, 15.63, 18.87)

● Robust designs are more expensive than their deterministic counterparts
● Cost increases only as necessary for increased feasibility guarantees (more scenarios factored in)
● Such robust design hierarchies establish an upper limit on the $ worth spending to reduce uncertainty

e.g., shall we do more “science” to improve our property models?
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Why Sequential DoE?

Verify that the 
model captures 
patterns

Add data for better 
model parameter 
estimation or 
prediction

Focus on region 
of maximum 
interest

Close to most 
desirable 
operation 
conditions

Understand 
basic 
relationship 
between inputs 
and responses

Is it possible to 
collect quality 
data?

Proof of 
concept

Feasibility 
study

Exploration 
of input 
space

Model 
building / 

refinement
Optimization

Verify results 
for production 
or operational 
use

Ability to 
duplicate 
results

Confirmation

SDoE: directly incorporate knowledge learned in previous stages
Result: strategic data collection across multiple stages



SBDoE Determines the Next Best Experiment to 
Minimize Uncertainty in Estimated Parameters �𝜽𝜽

Franceschini, G., & Macchietto, S. (2008). Model-based design of experiments for parameter 
precision: State of the art. Chemical Engineering Science, 63(19), 4846-4872.

SBDoE Decisions: 

Fisher information matrix (FIM): 

max𝝋𝝋 𝛹𝛹[ 𝑴𝑴 �𝜽𝜽,𝝋𝝋 ]

s. t. 𝒙̇𝒙 𝑡𝑡 = 𝒇𝒇( 𝒙𝒙 𝑡𝑡 , 𝒛𝒛 𝑡𝑡 ,𝒖𝒖 𝑡𝑡 , �𝒘𝒘, �𝜽𝜽 )

𝒈𝒈 𝒙𝒙 𝑡𝑡 , 𝒛𝒛 𝑡𝑡 ,𝒖𝒖 𝑡𝑡 , �𝒘𝒘, �𝜽𝜽 = 𝟎𝟎

𝒚𝒚 𝑡𝑡 = 𝒉𝒉( 𝒙𝒙 𝑡𝑡 , 𝒛𝒛 𝑡𝑡 , �𝜽𝜽)

𝒇𝒇𝟎𝟎 𝒙̇𝒙 𝑡𝑡0 ,𝒙𝒙 𝑡𝑡0 , 𝒛𝒛 𝑡𝑡0 ,𝒖𝒖 𝑡𝑡0 , �𝒘𝒘, �𝜽𝜽 = 𝟎𝟎

𝒈𝒈𝟎𝟎 𝒙𝒙 𝑡𝑡0 , 𝒛𝒛 𝑡𝑡0 ,𝒖𝒖 𝑡𝑡0 , �𝒘𝒘, �𝜽𝜽 = 𝟎𝟎

𝒚𝒚𝟎𝟎 𝑡𝑡0 = 𝒉𝒉( 𝒙𝒙 𝑡𝑡0 , 𝒛𝒛 𝑡𝑡0 , �𝜽𝜽)

𝒚𝒚 Measurements (model responses)
�𝜽𝜽 Estimated parameters

𝒙𝒙 Time-dependent differential state variables

𝒛𝒛 Time-dependent algebraic state variables

𝒖𝒖 Time-varying control variables

�𝒘𝒘 Time-invariant control variable

𝑴𝑴 ≈ 𝑽𝑽�𝜽𝜽
−1 ≈ 𝜎𝜎𝜖𝜖−2𝑯𝑯 ≈ 𝜎𝜎𝜖𝜖−2𝑸𝑸𝑇𝑇𝑸𝑸

𝝋𝝋 = ( 𝒖𝒖 𝑡𝑡 ,𝒙𝒙 𝑡𝑡0 , 𝒛𝒛 𝑡𝑡0 , �𝒘𝒘 )

DAE System

Initial
Conditions



Pyomo.DoE Enables Non-Experts to Use SBDoE
create_model

Create Pyomo model for DAE
Compatible with parmest

DesignVariables

Specify the SBDoE degrees 
of freedom and their bounds

MeasurementVariables

Specify the SBDoE
measurement variables and 
observation error covariance 
matrix

DesignOfExperiment

compute_FIM

stochastic_program

Fast exploratory analysis

Dynamic optimization

https://pyomo.readthedocs.io/en/stable/contributed_packages/doe/doe.html

https://pyomo.readthedocs.io/en/stable/contributed_packages/doe/doe.html


c

Optimize Fixed Bed Breakthrough Experiments to 
Characterize CO2 Capture Sorbent dmpn-Mg2(dobpdc)

FCO2

Feed

Outlet

Measurements:
• FCO2: CO2 outlet flowrate, [mol/s]

Wang, J., and A.W. Dowling. "Pyomo. DOE: An open‐source package for model‐based design of experiments in Python." AIChE J. (2022)



c d

FCO2
FCO2 , Tmid , Tend

Feed

Outlet

Measurements:
• FCO2: CO2 outlet flowrate, [mol/s]

Add two T
measurements

• Tmid: Temperature in the middle part of 
the bed, [K]

• Tend: Temperature in the outlet end bed, 
[K] 

Insight: Model is not identifiable with original 
configuration – measure outlet flowrate

Recommendation: Add two temperature 
measurements along the bed

Wang, J., and A.W. Dowling. "Pyomo. DOE: An open‐source package for model‐based design of experiments in Python." AIChE J. (2022)

Optimize Fixed Bed Breakthrough Experiments to 
Characterize CO2 Capture Sorbent dmpn-Mg2(dobpdc)



Measurement Optimization

Science-Based Design of Experiments (SBDoE) Measurement Optimization (MO)

Objective

Decisions
Decisions

Measurements:
What, Where, and When

Maximize measure of Fisher information matrix

Experimental conditions:
control variables, 

initial states,
number of experiments

Objective Maximize measure of Fisher information matrix

Decisions

• Often decide on measurements (instrumentation) months to years before any experiments are conducted
• How to rank measurements from most to least informative?

14 possible measurements:
• Flowrates (4)
• Temperatures (4)
• Compositions (5)

Need to balance measurement 
value (information) and cost

Dynamic Rotary Bed System



• End-to-end framework for risk-averse process design enables decision-
makers avoid unnecessary over-designs and shorten development cycles
– leverages the Pyomo ecosystem of computational capabilities

• The PyROS tool for two-stage robust nonlinear optimization can be 
invoked to determine designs with quantifiable insurances of feasibility
and performance guarantees
– establishes Pareto fronts between cost and risk of designs

• The Pyomo.DoE tool brings science-based design of experiments
capabilities to support pilot test campaign efforts
– recent emphasis on measurement optimization

Key Takeaways



Acknowledgements

We graciously acknowledge funding from the U.S. Department of Energy, Office of Fossil Energy and Carbon 
Management, through the Point Source Carbon Capture Program

• Douglas Allen, NETL
• Andrew Lee, NETL
• Joshua Morgan, NETL
• Anca Ostace, NETL
• Jason Sherman, CMU
• John Siirola, SNL
• Jialu Wang, UND
• Miguel Zamarripa, NETL

Disclaimer
This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support 
contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness 
of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.



For more information

Michael.matuszewski@netl.doe.gov

mailto:Michael.matuszewski@netl.doe.gov

	Technical Risk Reduction:�Model Based Design of Experiments and Robust Optimization
	Introduction
	Slide Number 3
	Slide Number 4
	Slide Number 5
	MEA-based CO2 Absorption Column Model
	MEA Absorption Column Model – 
Deterministic Solutions
	Slide Number 8
	Slide Number 9
	Slide Number 10
	MEA Absorption Column Model – 
Robustness of Deterministic Model Solutions
	MEA Absorption Column Model – 
Performance in Light of Altered Capture Targets
	Slide Number 13
	Slide Number 14
	PyROS: a Pyomo Robust Optimization Solver
	MEA Absorption Column Model –
PyROS Results
	Slide Number 17
	Why Sequential DoE?
	SBDoE Determines the Next Best Experiment to Minimize Uncertainty in Estimated Parameters  𝜽 
	Pyomo.DoE Enables Non-Experts to Use SBDoE
	Slide Number 21
	Slide Number 22
	Measurement Optimization
	Key Takeaways
	Acknowledgements
	Slide Number 26

