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Absorber columns have complex 

multiscale, multiphysics

dynamics.

Intrastage cooling using a non-

optimized intensified device can 

increase CO2 capture efficiency by 

5–25%, with almost 40% reduction 

in column size.

We have developed an integrated 

approach for process 

optimization.

Solvent model validation framework to optimize CO2 capture

Intensified device for 

intrastage cooling to 

control absorber 

column temperature 

profile

Absorber column

with commercial 

packing and 

intensified 

packing device for 

intrastage cooling

►
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Multi-pronged approach to validate solvent models

Sequential

Design of

Experiments

Performance

Testing

Machine

Learning

CFD

Simulations

Geometry

Prototyping

Process

Modeling

Optimized

Process
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Overall optimization strategy

Candidate geometry & 

operating conditions

CFD model & simulations 

ML Training

Process modeling & 

optimization

Update Geometry/UQ

Device manufacturing, 

column setup and 

experimentation
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𝛽 = 60°
𝛾 = 45°

𝛽 = 90°
𝛾 = 45°

𝛽 = 60°
𝛾 = 60°

Cross-section of intensified

packing design (All dimensions in mm.)

2D packingScripts for automated 

packing generation 2D/3D 

2D tuning parameters

3D tuning parameters

Packing # θ1 H (mm) d (mm)

1 30 10 1.78

2 45 10 1.78

3 60 10 1.78

4 30 13 1.78

5 45 13 1.78

6 60 13 1.78

7 30 14.8 1.78

8 45 14.8 1.78

9 60 14.8 1.78

10 30 10 2.67

11 45 10 2.67

12 60 10 2.67

13 30 13 2.67

14 45 13 2.67

15 60 13 2.67

16 30 14.8 2.67

17 45 14.8 2.67

18 60 14.8 2.67

19 30 10 3.56

20 45 10 3.56

21 60 10 3.56

22 30 13 3.56

23 45 13 3.56

24 60 13 3.56

25 30 14.8 3.56

26 45 14.8 3.56

27 60 14.8 3.56

27 packing design 𝐩ermutations

Geometric parametrization in 2D and 3D

3D candidate

geometries
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3D simulation framework

• First-ever implementation of the IDAES detailed reaction 

dynamics and thermodynamics in absorption CFD

• Unique, coupled multiphysics approach covering mass, 

momentum and heat transfer

• Locally dependent material propertiesSolvent: 30% MEA, 70% H2O (by mass) 
Flue gas: 10% CO2, 1.5% H2O, 88.5% N2 (by mass)

Multiphase flow 
dynamics

Mass transfer 
and reaction 

kinetics

Heat transfer 
and 

thermodynamics

INNOVATIONS ►

𝟐𝐌𝐄𝐀 + 𝐂𝐎𝟐 ⇌ 𝐌𝐄𝐀𝐂𝐎𝐎− +𝐌𝐄𝐀+

𝐌𝐄𝐀 + 𝐇𝟐𝐎+ 𝐂𝐎𝟐 ⇌ 𝐌𝐄𝐀+ + 𝐇𝐂𝐎𝟑
−

IDAES framework in Fluent & OpenFOAMCoupled multiscale, multiphysics

Flow predictions

Interfacial Area Wetted Area Liquid Holdup
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Preliminary indicative 3D simulation results

Liquid fraction (αl) Mass fraction of CO2 (YCO2) Temperature (T)
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Mellapak 350.Y

Mellapak 250.Y
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2-inch columns for higher-fidelity validation data

To measure solvent flow 

behavior on column 

material of construction

To characterize specific 

geometry performance 

for validation data

◄

3D printed column, with

full-size packing structures,

for rapid prototyping & testing

Dry pressure drop

Irrigated pressure drop
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32 LPM

Dry pressure distribution for the 2-inch column

16 LPM 48 LPM

“Measure what you model;

model what you measure.”

Δpmax

2.4 Pa

Δpmax

9.1 Pa

Δpmax

19.7 Pa
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8-inch column for model scaling testing

Current focus is on enhanced 

instrumentation to provide high-

fidelity boundary conditions and 

performance data for simulations

21
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Solvent properties measurements improve simulation accuracy
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MEA30 

CO2-MEA30 

MEA30 

CO2

(mol/kg)
Amine
(mol/kg)

1.21 7.19

1.78 4.46

1.19 4.60

0.89 4.66

0 4.86

CO2-MEA30 
CO2-Used MEA30*(c)CO2-Used MEA30*

Viscosity DensityStatic Contact Angles

We have a wide range of capabilities to measure specific solvent interaction with 

our specific packing materials of construction to improve simulation accuracy.

MEA30 on 410 SS
29.5°

MEA30 on 3D-Al

57.5°

Water on 3D-AlCO2–aged MEA30 on 

3D-Al 83.4°66.1°

13



Scaling sequence and capabilities

Column A
8-in (20 cm) diameter

2 m tall

Column B
12-in (30 cm) diameter

4 m tall

2-inch column

CFD film-modeling 

validation and 

candidate geometry 

testing

8-inch column, 0.1 TCO2/day

Candidate geometry 

validation & CFD/ML model 

support

12-inch column, 1 TCO2/day

Candidate geometry validation & 

CFD/process/ML model support

▲
PHOTOS NOT TO SCALE

▲
APPROXIMATELY TO SCALE

Intensified 

devices

Commercial

packing

Packing Prototype 

Performance Column
2-in (5 cm) diameter

0.7 m tall
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Scale-up sequence – intensified-device sections

8”
(20 cm)

12”
(30 cm)

250 m2/m3

2-inch (5 cm) 

section

8-inch (20 cm) 

section

12-inch (30 cm) 

section

3D-printed intensified devices0.3 L 5.6 L 29.7 L19 × 5.3 ×

► Objective: provide high-fidelity performance data sufficient to support process models, CFD, ML–ROM surrogates

▲

APPROXIMATELY

TO SCALE

6 in

(15 cm)

6.75 in

(17 cm)

16 in

(41 cm)
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Unique capabilities

• Special treatment of solvent layer incorporating IDAES framework for MEA 
chemistry, heat transfer, and transport properties for direct CFD simulation of 
solvent wetting, thermodynamics, and CO2 absorption

• Additive manufacturing for prototype packing fabrication and testing for process 
intensification

• Experimentation at multiple scales for scale-up validation

Because of the complexities of the solvent–packing interaction, scaling up of an 
optimized process is facilitated by the application of machine learning.

Highlights
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MACHINE LEARNING FOR 

ACCELERATING CFD AND 

DESIGN OPTIMIZATION



Machine learning for CFD
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CFD is critical for the fundamental 

understanding, to inform process and system 

level modeling.

• Need local information on transport 

phenomena to understand driving forces 

• Can be incorporated into design optimization

to optimize the device

Machine learning surrogates, such as Deep 

Fluids (DF) and MeshGraphNets (MGN), can 

reduce the computational burden of time-

consuming simulations.

Simulation time is a bottleneck that impedes 

high-level modeling.



Fast Surrogates for CFD Simulation Model

19

Raschig ring random packing config

Raschig ring element properties

Liquid flow rate 

Gas flow rate 

Liquid viscosity 

Liquid density 

Surface tension 

Contact angle

Packed ring surface to volume ratio

Interfacial area 

Liquid holdup

Pressure drop

Effective mass transfer 

fastsloooow

Inputs

Outputs

CFD sim

(high-dim)

Machine

Learning

▪ Machine learning surrogates to speed up computational fluid dynamics (CFD) 
simulations



CCSI2 ML for CFD
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DeeperFluids (DF) MeshGraphNets+ (MGN)

Representation

Prior work

Treats data as an image

For structured grids

Treats data as a graph

For unstructured meshes

Deep Fluids 

[Kim et al., Eurographics 2019]

MeshGraphNets

[Pfaff et al., ICLR 2021]



DeepFluids / DeeperFluids (DF)

Input
A single frame

t = 0 T = 500

Encoding
The frame is mapped to a feature 

vector (embedding) in latent space.

…

During prediction, the ML model uses the 

first frame to predict subsequent frames.

Decoding
Embeddings are mapped 

back to the physical space. …

Forward Pass
Predict the next embedding.

https://github.com/CCSI-Toolset/DeeperFluids

arXiv:2112.11656

https://github.com/CCSI-Toolset/DeeperFluids


MeshGraphNets (MGN)
t = 0

Input
A mesh within the original frame

𝑬
Encoding 𝑬
Each node and edge has its own 

embedding.

Message Passing 𝑴
Neighboring edges and nodes 

exchange info to update embeddings.

𝑴𝑛 Ƹ𝑧0
∗

𝑫

ො𝑥0
′

ො𝑥1

Decoding 𝑫
Updated embeddings are decoded, 

which represent the gradient in 

physical space.

Forward pass 𝑭
Via forward Euler

𝑭

Ƹ𝑧0

𝑥0

𝑴𝑛 Ƹ𝑧1
∗

𝑫

ො𝑥1
′

ො𝑥2

𝑭

Ƹ𝑧1

𝑬

…

…
ො𝑥𝑡
′ = 𝑫 Ƹ𝑧𝑡

∗

Ƹ𝑧𝑡
∗ = 𝑴𝑛 𝑬 ො𝑥𝑡

ො𝑥𝑡+1 = ො𝑥𝑡 + ො𝑥𝑡
′ Δ𝑡

https://github.com/CCSI-Toolset/MGN

arXiv:2304.00338

https://github.com/CCSI-Toolset/MGN


CCSI2 ML for CFD
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DeeperFluids (DF) MeshGraphNets+ (MGN)

Representation

Physics Physics constraints are difficult to 

incorporate after compression into images 

and latent spaces. Dynamics is learned 

within latent space.

Node dynamics is learned through interactions with 

other nodes via message passing, making it easier to 

impose physics constraints. Dynamics is learned within 

the physical space.

Accuracy DF will be less accurate than MGN, but 

should still be visually acceptable.

MGN should yield much higher accuracy, but at the 

expense of higher computational resources.

Transferability DF needs to be retrained to predict for new 

meshes/packings.

MGN learns the physics independent of mesh shape 

and can transfer well to new meshes/packings.

Speed-up DF favors speed over accuracy and 

transferability; up to 5000x faster than CFD.

MGN favors accuracy and transferability over 

speed; currently up to 200x* faster than CFD.

Treats data as an image

For structured grids

Treats data as a graph

For unstructured meshes
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2D RCM data
— 2 packing configurations (vertical slice of 3D packing)

• 50 simulations (different inlet velocities) 
• 500 timesteps
– Velocity, pressure, volume fraction measurements

• 150K irregularly spaced points (nodes)

https://data.pnnl.gov/group/nodes/dataset/33472

Trained on:

Tested on 

(MGN only):



DeeperFluids surrogates
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Building on the original surrogates…

We find better performance

And big speedups!



MeshGraphNets surrogates
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Packing Velocities Avg. %-error in IA

Trained Extrapolated 9.05

Unseen Trained 5.42

Unseen Interpolated 2.24

Unseen Extrapolated 7.79

Ground truth, sim 11 (extrapolated velocity, unseen packing) Predicted, sim 11 (extrapolated velocity, unseen packing)

Extrapolated velocities + unseen packings 



3D RCM data

Data:
— 50 simulations
— 500 timesteps

• Velocity, volume fraction, pressure 
measurements

— 3.1 million nodes (vs. 150K in 2D)

• With patch training, higher-order integration 

and other enhancements, MGN training is 

now feasible

• Current speed-up over CFD: ~150-185x 

faster with one V100 GPU

– Targeting 1000x next

https://data.pnnl.gov/group/nodes/dataset/33472



ML + design optimization
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Design w/CFD Simulate w/CFD Optimize

Feedback

Generate + 

Predict with ML
Optimize

Design Build Test

Feedback

Design w/CFD Simulate w/CFD Build

Feedback

Validate

Feedback

Learn ML models from data

Years/Months

Months/Weeks

Weeks/Days

< Days/HoursML-based

Optimization

Design

Optimization

CFD 

Analysis

Physical

Cycle

Feedback



• ML can accelerate CCS modeling and validation

– Use some CFD data to train sufficiently accurate + faster ML surrogates

– Once trained, replace CFD dependence with ML surrogates

• Multiphysics

– ML transferability: able to update/fine-tune already-trained models to 

account for additional physics

• Novel packing configurations

– MGN able to predict well on unseen packings/meshes

• Scaling up

– MGN able to work on arbitrary domain/mesh sizes

– Can update/fine-tune already-trained models to account for scale-up 

effects

ML for design optimization, TRL progression
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Process-level optimization is facilitated by machine-learning models trained on 

detailed CFD simulations — experimentally validated at different scales —

capturing the effects of design and operating conditions on the absorption 

performance for a given solvent. 

Components

• Sequential Design of Experiments – see next talk by Abby Nachtsheim

• Experimental prototype performance fabrication and testing

• Process modeling and optimization

• Computational Fluid Dynamics modeling

• Machine Learning

Summary
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For more information

FINNEYC@ORNL.GOV

NGUYEN97@LLNL.GOV
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