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Project Overview 

– Funding provided by DOE-FECM: $1.878M

– Overall Project Performance Dates:                                          

 January 1, 2021 – December 31, 2023

– Previous Projects:                                                                                    

Focused on design, manufacturing, and validation of intensified devices 

for enhanced carbon capture using MEA and low-aqueous solvents

• Intensified device enhances mass transfer, just like commercial packing, and allows 

a third fluid (coolant) to remove the heat of reaction between CO2 and amines

• Jang et al., “Process Intensification of CO2 Capture by Low-Aqueous Solvent,” 

Chem. Eng. J., 426, 131240, (2021)

– Motivation for the current Project: Scalability of the intensified device
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2MEA + CO2 ⇄ MEAH+ + MEACOO− (+ 79-100 KJ/mol) (Exothermic)

Technology Background: How the Intensified Device Works

Column A

Intensified 
Devise

• Miramontes et al., Additively Manufactured Packed Bed Device for Process 

Intensification of CO2 Absorption and Other Chemical Processes, Chem. Eng. 

J., 388, 124092, (2020)
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How The Device Works

• Miramontes et al. Process Intensification of CO2 Absorption Using a 3D 

Printed Intensified Packing Device, AIChE J.  e16285, (2020)

• Depending on operating parameters, 5-25% CO2 capture enhancement was observed

• Safety incident in the laboratory, using Column A: Worker exposure to CO2 solvent

• A Lessons Learned was published for other laboratories
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Overall Project Objectives for FEAA 384

• Design and construct a larger-scale column (Column B) than the one 

previously tested (Column A)

• Scale up CO2 capture  from 0.1 t/day to 1 t/day 

• Demonstrate Column B construction with modular packing elements and 

intensified devices

• Demonstrate 15% enhancement in CO2 capture for aqueous and low-

aqueous amine-based solvents at realistic operating conditions

• Demonstrate effective capture for different CO2 gas compositions and 

during process transients, with capacity ramping up and down 

anticipating the intermittency of renewable energy
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Task 2.0 – Design Evaluation and Construction of  Column B

Modeling Framework:
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Modeling MEA w/Intrastage Cooling

• Simulation of intrastage cooling with device showed good agreement with 

experimental data from Miramontes et al. (2020)

– CO2 capture difference: all <= 5% 

• CO2 capture improvement and temperature profile agreement suggest modeling 

framework for heat transfer is accurate in predicting device performance

E = Ha
E = f(Ha,E∞)

With cooling Adiabatic

Thompson and Tsouris, “Rate-Based Absorption Modeling for Post-Combustion CO2 Capture with 

Additively-Manufactured Structured Packing”, Ind. Eng. Chem. Res., 2021, 60(41), 14845-14855.
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Modeling RTI’s Low Aqueous Solvent w/Intrastage Cooling

Simulated vs experimental CO2 capture rate of LAS under adiabatic (black) and cooling (red) 
conditions. Closed symbols are predictions from Model 1, and open symbols are from Model 2. 
Solid black line is parity line, and dashed lines are +/- 10% capture rate. 
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Process Diagram for Column Design

Process flow and equipment essential to proper design around absorption column
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Column B Construction: Equipment in CVO Area

Cell 5
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Column B Construction: Equipment in Cell 5
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• New unit cell geometry: Column A

• Added flanges for device 
integration with the column

• Added supports for printability

For Column B

Task 3.0 – Advanced Manufacturing and Core Metrics Testing 
of  Intensified Device for Column B 
Scale-up from 8” to 12” Diameter

350 m2/m3 250

250 m2/m3

Design of 12-inch device
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Scaled-Up Intensified Devices 

12-inch diam., 16-inch height

8”

12”

8- and 12-inch devices
(volume ratio: 5.3)
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Modular Column Design

Modular column design provides flexibility in testing packing locations

Cell 5

Flue Gas

Cell 5

Lean Solvent

Cell 5

 Flue Gas

Cell 5

Rich Solvent

3.8 m x 0.305 m

Column B

Up to 9 0.42-m sections Pressure Indicator

Temperature Indicator

Flowmeter

Column Structural 

Support

Lean Solvent

5-30 LPM

Flue Gas

1500-13000 SLPM

HV-6
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HV-10
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Process Water
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Two Sulzer Mellapak 250Y packing 

elements per each module
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Core Metrics Testing of  Intensified Device: Pressure Drop

Pressure drop along the intensified device is relatively high

Fg (ug*ρG
0.5) 
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Design Revisions for 
Intensified Device

Void Fraction

Before 60.0%

After 81.7%

• Changes to reduce pressure drop 
– Increased channel width

– Increased triangle height

– Increased void fraction

Before After

• Collaborating with CCSI2 (Panagakos) 

for further optimization of the device 

geometry
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Core Metrics Testing of  Intensified Device: Pressure Drop and 
Holdup vs Fg for Different Liquid Flowrates

Pressure drop and holdup increase sharply near flooding

Lines from Stichlmair correlation Lines from Tsai correlation
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Core Metrics Testing of  Intensified Device: Heat Transfer

(a) Water flowrate 5 LPM, zero air flow
(b) Water flowrate 16.8 LPM, air flowrate 1500 LPM
(c) Water flowrate 5 LPM, air flowrate 1500 LPM. 
      Feed water temperature is 60°C and feed air temperature is 25°C in al cases 
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Average temperature reduction via cooling through 
intensified device at liquid-to-gas mass-flowrate 
ratios: L/G = 0, 2.8, and 9.4 

Core Metrics Testing of  Intensified Device: Heat Transfer

Heat transfer experiments without cooling (black) and 
with cooling using 2.95 L/min water at 20 C (red). Lines 
represent simulation results

92 Kg/hr gas, 585 Kg/hr liquid
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Task 4.0 – Using NTRC Engine Combustion Exhaust to Simulate 

Various Flue Gas Compositions

• Feed gas will be generated with 
natural gas generator set

– 100 kW generator

– 9L natural gas engine

– Electricity dissipated by load bank

• Exhaust gas generation:

– Up to 1.4 tons CO2/day

– Water dew point and temperature 
managed by heat exchangers

Genset installed in 
the Mezzanine area

Load bank installed in 
the Mezzanine area



21
21

Summary

• Modeling work was used for column design

• Column construction and hydraulic & heat-transfer testing completed 

• Project delays related to (1) safety incident and (2) personnel changes

• Mass transfer milestones are the focus of current work

⎼ CO2 capture experiments using aqueous MEA

⎼ CO2 capture experiments using LAS (RTI)

⎼ Performance evaluation under transient conditions

Commercialization

• Currently helping RTI demonstrate enhanced CO2 capture 
from a cement plant using intensified packing devices 
(AMMTO funded project)

• Plan to demonstrate further scalability in a future project

Tasks 6-9
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Products from FEAA384

• Thompson, Tsouris, “Rate-Based Absorption Modeling for Post-Combustion CO2 Capture 

with Additively-Manufactured Structured Packing”, Ind. Eng. Chem. Res., 60, 14845, 

(2021). https://doi.org/10.1021/acs.iecr.1c02756

• Tarancon, A., et al. “2022 Roadmap on 3D Printing for Energy,” JPhys Energy, 4, 011501 

(2022). https://doi.org/10.1088/2515-7655/ac483d

• Lai et al. “Multifunctional Intensified Reactor Device with Integrated Heat and Mass 

Transfer,” Patent # 11,504,692 B2 (2022). 
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