Fog+Froth-Based Post-Combustion CO₂ Capture in Fossil Fuel Power Plants DE-FE0031733

Heather Nikolic and Kunlei Liu

IDEA at PPL R&D Center University of Kentucky Lexington, KY

http://uknow.uky.edu/research/unique-public-private-researchconsortium-established-caer-co2-capture-pioneers

2023 Carbon Management Research Project Review Meeting August 28-September 1, 2023

Project Objective

Reduce CO_2 capture capital and operating costs by reducing the absorber size

Performance Dates: 5/1/2019-12/31/2023

BP1

- 5/1/2019-1/31/2021
- Test Plan, TMP
- Absorber Fabrication and Testing
- Absorber Integration into Existing UK Bench CO₂ Capture Unit
- Parametric Testing

BP2

- 2/1/2021-12/31/2023
- Long-term testing
- SPDT, TEA, EH&S, TGA
- Low Absorber Bottom T Performance Evaluation

Project Participant Scope of Work • Project Lead

Project Participant	Scope of Work
	Project Lead
University of	• Nozzle selection, compact absorber design, fabrication and integration
Ventuelar (LIV)	with existing facilities
Kentucky (UK)	• Parametric and long-term study, data analysis, reporting and project
	management
Industrial Climate	• Exothing concretion design and section febrication
Solutions, Inc. (ICSI)	• Froming generation design and section fabrication
NexantECA	Techno-economic analysis (TEA)
ALL4	Environmental, Health and Safety (EH&S) assessment

	DOE-NETL	Cost Share	Total
Total	\$2,947,404	\$738,023	\$3,685,427
Percent Share	80%	20%	100%

Executive Summary

On Track to Meet Deliverables and Success Criteria

- Achieved over 2300 total hours of operation
- Absorber bottom T of 27 °C demonstrated
- TEA on low absorber bottom T case complete:
 - Net Power Output of 686 MWe, 5% increase from 2019 B12B
 - LCOE of 95.6 \$/MWh (ex. T&S), 9% reduction from B12B
 - BESP of \$36.7/tonne CO₂, 20% reduction from B12B

Previous Findings:

- 2.3 mol C/kg rich loading demonstrated, on par with traditional absorber performance with >2X absorption height
- Statistical analysis of long-term campaign data show residence time is limiting factor for CO₂ absorption and no performance change with increasing solvent degradation
- Solvent emissions after absorber consistent with small pilot data, supporting <1 ppm after water wash

Energy Advancement at PPL R&D Center

COC2 Capture Direct Costs Costs

Equipment		45%
Columns	50%	
Heat Exchangers	25%	
Pumps	10%	
Instrumentation and Control	5%	
Balance of Plant	10%	
Civil		20%
Installation		20%
Engineering Fee		10%
Insurance and Others		5%
		100%

Increased A – Replace Packing with Fog and/or Froth

With a fog, the surface area is increased by 5 to 7 times that of 250Y structured packing.

Liquid-Gas Contact Surface Area at L/G=3.5 mass/mass					
Uniform Droplet Size (µm)	30	40	50	75	100
Liquid-Gas Contact Surface Area (m ² /m ³)	3119	2339	1871	1247	936
Improvement over 250Y Structured Packing	12.5X	9.4X	7.5X	5.0X	3.7X

Liquid-Gas Contact Surface Area at L/G=3.5 mas	s/mass				
Uniform Bubble Size (mm)	3	4	5	8	
Liquid-Gas Contact Surface Area (m ² /m ³)	2000	1500	1200	750	
Improvement over 250Y Structured Packing	8X	6X	3X	3X	
					-

Increased k'_g – Replace Packing with Fog and/or Froth

Specific absorption 2.6 to 4.1X higher than in the traditional absorber, depending on the operating parameters.

SpecificAbsorption

Specific Absorption in the Compact Absorber Parametric Campaign Compared with that in a Traditional Absorber Specific Absorption in Each Section of the Compact Absorber Compared with that in a Traditional Absorber

Specific Absorption

man of Engineering

Lower Absorber Bottom T \rightarrow Lower Stripper Top T \rightarrow Increased Stripper Bottom to Top $\Delta T \rightarrow$ Decreased Regeneration Energy

UK Small Pilot Evaluations with 14 & 4 vol% CO₂ Flue Gas by Dilution with Air

$\begin{array}{c} 2022\\ \text{Advanced}\\ \text{Solvent}\\ \text{Campaign}\\ \text{Inlet CO}_2\\ \text{Concentration} \end{array}$	Flue Gas Flow (acfm)	Lean Flow (lb/h)	Lean Absorber Inlet Temp. (°F)	Absorber Bottom Temp. (°F)	Stripper Bottom Temp. (°F)	Stripper Top Temp. (°F)	Stripper Bottom to Top Δ Temp. (°F)	% Capture	Heat Duty (KJ/kg CO ₂)
14 vol%	1300	10999	104	123	258	193	65	98	2631
4 vol%	550	4013	92	96	258	182	76	98	1767

Lower Absorber Bottom Temperature

Lower Absorber Bottom T → Higher Achievable Rich Loading Lower Absorber Bottom T \rightarrow Increased Viscosity \rightarrow Increased CO₂ Diffusion Resistance \rightarrow Decreased CO₂ Diffusion

Energy Advancement at PPL Institute for Decarbonization and **R&D** Center

nan

Engineering

Technical Approach man Kentucky of Engineering **Compact CO₂ Absorber Energy Advancement at PPL R&D Center**

Design, Fabricate and Research a **Compact Absorber**

Atomizing Nozzle Selection

Froth Screen Design

In-Situ Heat Rejection

UK's Bench Postcombustion CO₂ Capture Facilities

Evaluation

Parametric Campaign Long Term Campaign TEA EH&S State Point Data Table TMP TGA Cold Absorber **Bottom T Evaluation** Additional TEA Case

Project Milestones

Iniversity of Kentucky	College of Engineer	1,211,411	nemor
	eering		

6	Milestone Title/Description	Planned	Actual
0	Whestone The Description	Date	Date
1	PMP Updated	5/31/2019	5/31/2019
2	Project Kickoff Meeting	7/31/2019	5/14/2019
3	Technology Management Plan (TMP) Updated	7/31/2019	7/25/2019
4	Test Plans Completed	8/31/2019	9/15/2019
5	Fog Section of Unit Constructed and Tested	9/30/2019	8/2/2019
6	Froth Section of Unit Constructed and Tested	9/30/2019	1/31/2020
7	Compact Absorber Constructed and Integrated into Small Bench Process	4/30/2020	6/30/2020
8	Parametric Test Campign Complete	1/31/2021	1/31/2021
9	Long-term Test Campaign Complete	6/30/2022	3/9/2022
10	Techno-economic Analysis (TEA) Complete	8/31/2022	9/7/2022
11	State Point Data Table Updated	4/30/2021	3/31/2021
12	Technology Gap Analysis (TGA) Complete	5/30/2023	7/31/2023
13	Environmental, Health and Safety (EH&S) Assessment Complete	10/31/2022	9/30/2022
14	Existing bench unit modified and achieves an absorber bottom temperature of $\leq 95^{\circ}$ F at 2-20% CO ₂ inlet concentration.)	3/31/2023	2/28/2023
15	Test plan approved by NETL that covers 80-95 °F absorber bottom temperatures and 2-20 vol% inlet CO ₂ concentrations	4/30/2023	2/28/2023
16	Complete ~200 hours experiments between 2 to 8 vol% inlet CO ₂ concentrations at 80-95 °F absorber bottom temperatures	6/30/2023	6/28/2023
17	Complete ~200 hours experiments between 8 to 14 vol% inlet CO_2 concentrations at 80-95 °F absorber bottom temperatures	8/31/2023	5/18/2023
18	Complete ~200 hours of experiments between 14 to 20 vol% inlet CO_2 concentrations at 80-95 °F absorber bottom temperatures	10/31/2023	
19	Additional TEA Case Complete and TEA Revised	12/31/2023	

Project Success Criteria

- BP1
- 1. Atomizing nozzles compared, selected and tested
- 2. Froth plates compared, selected and tested
- 3. Functioning fogging+frothing-based compact absorber with liquid/gas contact area increased by at least 5 times over structured packing
- 4. Mass transfer enhancement by at least 4 times \checkmark
- 5. Fog droplet size of 10-50 μm 🗸
- 6. Froth bubble size of 3-5 mm with liquid film thickness of $<10 \,\mu$ m
- 7. Open section of hybrid absorber captures 60-70% of the CO_2 and packed section captures 20-30%
- of the $CO_2 \vee$

BP2

- 8. Long term verification of fogging+frothing-based compact absorber functionality with solvent degradation, based on ~1000 run hours on the UK CAER bench CCS with at least the same baseline capture efficiency and regeneration energy
- 9. TEA shows the following:
- A) capital cost savings of $\geq 10\%$ and cost of CO₂ capture reduction of $\geq 15\%$ compared to DOE RC B12B, B) an absorber column that is ~70% shorter for the same CO₂ removal duty with ~50% electricity savings for the flue gas booster fan due to the shorter column and packing height, C) when the UK CAER advanced solvent is used (with a heat of desorption ~20% less than 30 wt% MEA), a specific reboiler duty (energy consumption) of 900 Btu/lb (2.1 GJ/tonne) CO₂ captured can be reached by reducing the primary stripper exhaust H₂O/CO₂ ratio to 0.25, and D) ~50% reduction in the CCS capital cost 10. EH&S assessment shows no impediment to technology development 11. When evaluated with varied absorber bottom temperatures, the compact absorber performance at least matches the baseline capture efficiency and rich solvent loading with reduced regeneration energy.

Pig College Project Risks and Mitigation Strategies

Environmental Impact	An alternative solvent will be used or a system modification will be made, depending on the environmental problem identified.			
Low Mass Transfer in Fogging and Froth Section	 Alternate nozzle/plate configuration may be used Fixture installation to enhance gas/liquid interface will be considered Solvent properties may be modified for fine mist 			
Froth Stability and Bubble Size	 Froth generating plate will be modified Alternate liquid distributor will be considered Solvent physical properties will be adjusted and tuned 			
Impact of In-situ Heat Exchanger on	Heat exchanger design will be modified			
Fog and Froth	Heat exchanger location will be adjusted			
Impact of Solvent Degradation on Fog and Froth	 Alternate nozzle configuration will be used Froth generation plate will be modified Degradation inhibitors may be added to the solvent 			

man

Low Absorber Bottom T Achieved

nstitute for Decarbonization and nergy Advancement at PPL **R&D** Center

Bench Scale Performance Maintained

nstitute for

Decarbonization

nergy

vancement at

R&D

Center

11 °C Lower Absorber Bottom T → Same Rich Loading and Cyclic Capacity Because 4" ID Absorber is More Sensitive to Viscosity Increase

11 °C Lower
Absorber Bottom T
→ Same Stripper
Top T and Bottom to Top ΔT
Because L/R
Exchanger is
Oversized at Bench Scale

TEA Case with Low Absorber Bottom T

Next Step:

Maintain

Inlet Free Amine Flux:Inlet CO₂ Flux

to Demonstrate Higher Rich Loading and Reduced Regeneration Energy

Synergy Opportunities

Solvent spray to be applied at large pilot, engineering scale demonstrations, NGCC FEED and CO_2 removal.

Low absorber bottom temperature to be applied at low CO_2 concentration point sources.

Collaborating with PPL Corporation, Nucor Steel, Vitro Glass, WY ITC.

Lesson Learned

- 1. Advancing through the TRLs in small steps is necessary. Results differ at the lab, bench and pilot scales and the fundamental reasons must be understood.
- 2. 4" ID column is very sensitive to wall effects and solvent physical properties.

Energy Advancement at PPI nstitute for Decarbonization and **R&D** Center

Development & Commercialization

Develop: Counter-current Solvent Spray and Nozzle Array Design for Large Scale Application

Demonstrate: Engineering Scale and Large Pilot, NGCC and Industrial Applications

Incorporate: Solvent Spray and Cold Absorber Bottom T into Suite of UK CO₂ Capture Processes for Reduced CAPX and OPEX

Acknowledgements

U.S.DOE NETL: Carl Laird, Greg O'Neil, José Figueroa, Dan Hancu and Lynn Brickett

Industrial Climate Solutions (Baker Hughes): Bill Hargrove and Richard Adamson NexantECA: Alexander Zoelle, Nicholas Knez, Gabrielle Farrell, and Babul Patel ALL4: Karen Thompson

UK: Reynolds Frimpong, Aaron Smith, Marshall Marcum, Len Goodpaster, Lisa Richburg, and Kunlei Liu

Appendix: Organizational Chart

College of Engineering **Energy Advancement at PPL R&D Center** Institute for Decarbonization and

Appendix: Gantt Chart

Task Name	Start	Finish	2019
Task 1 - Project Management and Planning	Wed 5/1/19	Sun 12/31/23	
PMP Updated	Fri 5/31/19	Fri 5/31/19	5/31
Project Kickoff Meeting	Wed 5/15/19	Wed 5/15/19	5/15
Budget Period 1	Wed 5/1/19	Sun 1/31/21	
Task 2 - Technology Maturation Plan	Wed 5/1/19	Wed 7/31/19	
Technology Maturation Plan (TMP) Updated	Wed 7/31/19	Wed 7/31/19	♦ 7/31
Task 3 - Test Plan	Thu 8/1/19	Sat 8/31/19	01
Test Plan Completed	Sat 8/31/19	Sat 8/31/19	8/31
Task 4 - Fog and Froth Generation, Unit Fabrication and Testing	Wed 5/1/19	Sat 11/30/19	
Subtask 4.1 - Atomozing Nozzle Selection or Design and Evaluation	Wed 5/1/19	Mon 9/30/19	
Fog Section of Unit Constructed and Tested	Mon 9/30/19	Mon 9/30/19	 9/30
Subtask 4.2 - Froth Generating Plate Design and Evaluation	Wed 5/1/19	Mon 9/30/19	
Froth Section of Unit Constructed and Tested	Mon 9/30/19	Mon 9/30/19	1
Subtask 4.3 Optical Window Design	Wed 5/1/19	Wed 7/31/19	
Subtask 4.4 Testing and Design Adjustment	Tue 10/1/19	Thu 10/31/19	T
Subtask 4.5 Heat Rejection Determination	Fri 11/1/19	Sat 11/30/19	
Task 5 - Integration into the UKy-CAER Bench CCS	Sun 12/1/19	Sun 1/31/21	
Subtask 5.1 - Absorber Design and Fabrication	Sun 12/1/19	Mon 2/17/20	
Subtask 5.2 - In-situ Heat Exchanger Design	Sun 12/1/19	Mon 2/17/20	
Subtask 5.3 - Retrofit and Commissioning	Tue 2/18/20	Thu 4/30/20	ĭ ,
Compact Absorber Constructed and Integrated into Small Bench Process	Thu 4/30/20	Thu 4/30/20	◆ 4/30
Subtask 5.4 - Parametric Campaign	Fri 5/1/20	Sun 1/31/21	i i i i i i i i i i i i i i i i i i i
Parametric Test Campaign Complete	Sun 1/31/21	Sun 1/31/21	• 1/31
Subtask 5.5 - Data Analysis	Fri 5/1/20	Sun 1/31/21	ř.
Budget Period 2	Mon 2/1/21	Sun 12/31/23	
Task 6 - Integration of Compact Absorber into the Large Bench	Mon 2/1/21	Sun 7/31/22	
Subtask 6.1 - Retrofit and Commissioning	Mon 2/1/21	Wed 3/31/21	
Subtask 6.2 Long-term Campaign	Thu 4/1/21	Thu 6/30/22	*
Long-term Test Campaign Complete	Thu 6/30/22	Thu 6/30/22	6/30 💊
Subtask 6.3 - Data Analysis	Thu 4/1/21	Sun 7/31/22	×
Task 7 - Techno Economic Analysis	Mon 2/1/21	Wed 8/31/22	
Subtask 7.1 - Modeling	Mon 2/1/21	Fri 12/31/21	
Subtask 7.2 - TEA	Sun 8/1/21	Sun 7/31/22	
Techno-economic Analysis (TEA) Complete	Mon 1/31/22	Sun 7/31/22	
Task 8 - State Point Data Table	Mon 2/1/21	Fri 4/30/21	
State Point Data Table Updated	Fri 4/30/21	Fri 4/30/21	♦ 4/30
Task 9 - Technology Gap Analysis	Fri 10/1/21	Tue 5/30/23	
Technology Gap Analysis Complete	Tue 5/30/23	Tue 5/30/23	♦ 5/30
Task 10 - Environmental, Health and Safety Assessment	Fri 10/1/21	Mon 10/31/22	
EH&S Assessment Complete	Mon 10/31/22	Mon 10/31/22	10/31
Task 11 - Low Absorber Bottom Temperature Performance Evaluation	Sun 1/1/23	Sun 12/31/23	
Subtask 11.1 - Retrofit	Sun 1/1/23	Fri 3/31/23	
Subtask 11.2 - Experimental Evaluation	Sat 4/1/23	Tue 10/31/23	
Low Absorber Bottom Temperature Evaluation Complete	Tue 10/31/23	Tue 10/31/23	◆ 10/3
Subtask 11.3 - TEA Case	Sat 4/1/23	Sun 12/31/23	
Additional TEA Case Copmplete and TEA Revised	Sun 12/31/23	Sun 12/31/23	• 12