Inn^co₂Sepra Transformational Sorbent-Based Process for a Substantial Reduction in the Cost of CO₂ Capture (DE-FE0031722)

Drs. Ravi Jain & Norberto Lemcoff InnoSepra, LLC Middlesex, NJ 08846 ravi.jain@innosepra.com, 908-672-7395 www.innosepra.com

> U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 28 – September 1, 2023

Executive Summary

- CO₂ Capture with physical sorbents with low heats of sorption (~0.8 GJ/MT)
 - High purity CO₂ (>98%) at high recovery (90-95%)
 - Up to 99% recovery possible with some process modifications
 - The absolute energy requirement (excluding compression) of 1.6-1.8 GJ/MT of CO₂, needed at about 110°C
 - Absolute energy requirement is 40% lower than Shell Cansolv and 57% lower than MEA
 - The relative energy requirement, based on lost work analysis, is 64% lower than Shell Cansolv and 71% lower than MEA assuming 160°C steam extraction temperature for amines
 - Significantly lower capital (>45% reduction), and parasitic power (>45% reduction) leading to >45% lower capture cost
 - <\$30/MT capture cost for pipeline quality CO₂
 - Lab scale testing, process simulation, and a preliminary TEA during BP1; bench scale testing at TCM and a final TEA during BP2

About InnoSepra

- Started in 2007 by a team with 70+ years of experience in industrial gases separation and purification
 - More than 25 commercialized technologies in more than 100 plants for The BOC Group leading to a value creation of >>\$100 MM, 30-2,000 tons per day scale
 - Air purification prior to cryogenic distillation, N₂ PSA, O₂ VSA, UHP nitrogen for electronics, merchant CO₂ production and purification (80-800 tpd scale), liquid and gaseous hydrogen, NO_X removal from the flue gas

Understanding customer needs/pain points is in our DNA

- Worked very closely with business units (at The BOC Group) to understand business needs and developed technologies to address those needs
- Since its founding InnoSepra's primary focus has been on the development of cost-effective carbon mitigation technologies
 - CO₂ capture from existing point sources (power plants and industrial)
 - Low carbon H₂ from SMRs, renewable H₂ and fuels from biogenic sources
 - Removal of legacy CO₂ from air (Direct Air Capture)
 - Renewable natural gas from waste (landfill gas, biogas from anaerobic digesters)

The DOE Project (FE0031722)

- Objectives: >90% CO₂ recovery, >95% purity with a potential pathway for <\$30/MT capture cost by 2030
- The total project budget is U.S. \$5.07 million (\$4.01 MM DOE, \$1.06 MM match including significant match from TCM)
- In the first budget period (May 2019 to March 2021) we
 - Optimized the sorbent and the regeneration process through lab testing, Monte Carlo simulations, and process simulation
 - Did a detailed design and costing of the bench unit, a preliminary TEA, and a HAZOP addressing TCM integration issues

In the second budget period (April 2021 to April 2024) we

- Constructed a field test unit (500 Nm³/hr scale)
- Shipped the test unit to TCM and completed commissioning
- Will carry out process testing at TCM, do a detailed engineering design, and a Rev 4 techno-economic evaluation for a commercial scale unit (550 MW power plant)

Project Participants

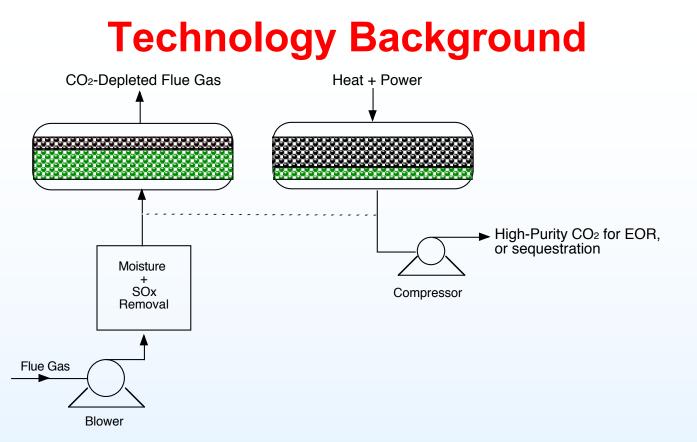
DOE/NETL

 Project oversight, feedback, funding (Project Manager: Mariah Young)

InnoSepra

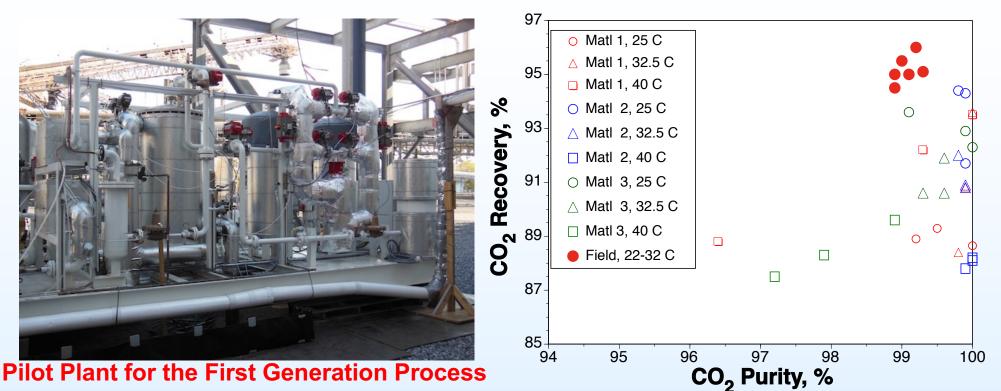
 Technology development at lab and bench scale, coordinate with partners, project management and reporting

Process and Equipment Development Corp (PEDCO)


Detailed techno-economic analysis, cost share

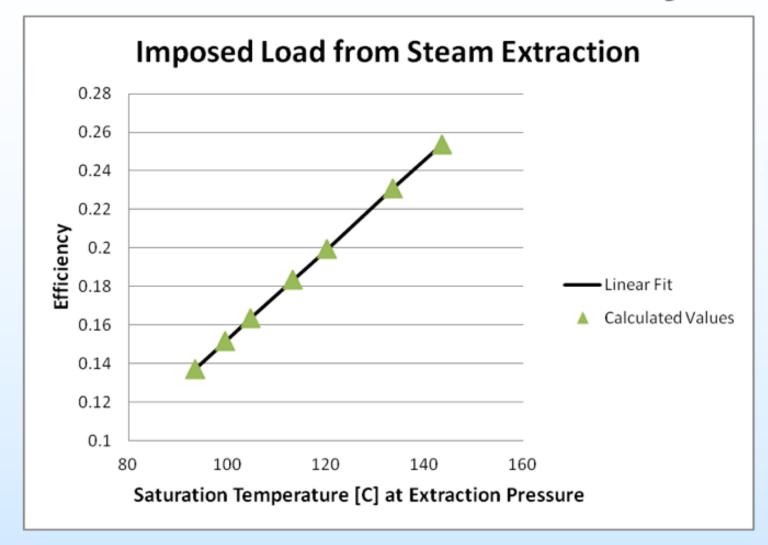
TCM

Field testing, commercial feedback, and cost share
Adroitech


Monte Carlo Simulation, fabrication of structured sorbents
Adsorptech / Fabrication Partners

Bench unit design and fabrication, cost share

- Flue gas pretreatment for NO₂ and SO_x removal to sub-ppm levels, removal of substantial amounts of aerosols, and moisture removal to ppm levels
 - NO₂, SO_X and aerosol removal demonstrated at pilot scale; applicable to solvent capture
- Physical sorbents with a very high surface area (>10 million m²/m³), low heats of adsorption (0.8 GJ/MT of CO₂)
 - Adsorption at 25-40°C, regeneration at 90-110°C, high net CO₂ capacity (>8-wt%)
 - Pipeline quality CO₂ (>98% purity, <1 ppm H_2O and SO_X, <10-ppm O₂), >90% recovery
- Key innovation is the novel combination of process, sorbent regeneration and materials leading to >45% reduction in parasitic power
 - Performance similar to or better than amines, much lower regeneration energy requirement


Field Demonstration of First Generation CO₂ Capture Process

- NRG's Indian River, DE coal fired power plant, more than 8 weeks of testing
- 80-100 scfm flue gas, 22-32^oC feed, 50-ppm SO₂, 10-12% CO₂
- 8-10.5 wt% net CO₂ capacity in the field
- >94% CO₂ recovery, 98.5- 99.5% CO₂ purities, pipeline / EOR quality gas (<10 ppm oxygen and moisture)
- Flue gas purification demonstrated at the Abbott, IL power plant (500 scfm)

7

Impact of Steam Extraction Temperature on Power Generation Efficiency

- 40% lower efficiency for saturated steam extracted at 160°C vs. 105°C
- 40% lower power (work) lost due to lower extraction temperature for the same absolute amount of steam extracted

Regeneration Energy Requirements (First Generation Process)

 Estimates for the InnoSepra process based on the field tests and EPRI evaluation:

•	Heat of desorption	0.80 GJ/MT
•	Vessel + sieve heating	0.60 GJ/MT
•	Miscellaneous	0.70 GJ/MT
•	Dehydration	0.00 GJ/MT
•	Total (excluding compression)	2.10 GJ/MT

- The absolute energy requirement is about 40% lower than MEA
- Regeneration energy is needed at about 105°C compared to >160°C for amines
 - About 40% lower power loss due to steam extraction for the same absolute amount of steam extracted
- Lower absolute amount of regeneration energy and lower regeneration temperature leads to 74% lower power loss vs. MEA

Second Generation InnoSepra Process

- A breakthrough regeneration method has allowed reduction in the absolute energy requirement to 1.6-1.8 GJ/MT (based on lab testing and process simulation) at about 110°C
 - The process is also simpler, significant capital savings over the first generation process
- Effective parasitic load of 1.0 GJ/MT based on a steam extraction temperature of 160°C (74 psia) for MEA and Cansolv
 - About 64% lower than Cansolv, and about 71% lower than MEA
 - Less than 16% of plant's output for CO₂ capture and compression
- The technology is to be demonstrated at the bench scale at TCM (Technology Centre Mongstad) in 2023

Regeneration Energy Requirement for the Second Generation Process

- Estimates for the second generation InnoSepra process:
 - Heat of desorption
 - Vessel + sieve heating
 - Miscellaneous
 - Dehydration
 - Total (excluding compression)

0.80 GJ/MT 0.60 GJ/MT **0.15 GJ/MT** 1.55 GJ/MT

Technical Approach

Experimental Design and Work Plan

- The Work Plan for BP1 involved
 - Identification of suitable materials based on lab testing and Monte Carlo simulations
 - Testing the materials in a lab scale unit for purity and recovery
 - Process simulation to estimate the energy requirements and equipment sizing
 - A techno-economic analysis to estimate the capital cost and the CO₂ capture cost

The Work Plan for BP2 involves

- Bench unit fabrication, HAZOP, shipping and installation
- Testing at TCM with simulated SCPC flue gas as a function of flow rate, feed temperature, and regeneration temperature
- Process simulation to update the energy requirements and equipment sizing
- A final techno-economic analysis to estimate the capital cost and the CO₂ capture cost

Technical Approach

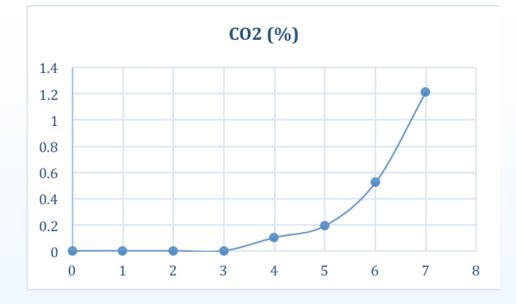
Key Milestones

- Identification of suitable materials with at least 6-wt% capacity for >95% purity
- Process model completion and initial techno-economic analysis
- Detailed bench unit design, costing and HAZOP
- Bench unit fabrication, shipping & installation, and testing
- Detailed engineering design for a 550 MW SCPC plant
- Final TEA with Rev 4 guidelines to determine potential capture cost

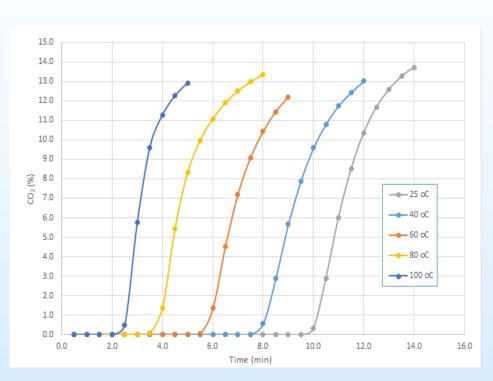
Project Success Plan

- Thermal requirements below 1.8 GJ/MT and a capture cost below \$40/MT based on lab testing & simulation
- Thermal requirements below 1.8 GJ/MT and a capture cost below \$40/MT based on field testing & detailed engineering design

Project Risks and Mitigation Strategies


 The key risks include resource availability, and sorbent regeneration. Back up resources and regeneration approaches have been identified.

Key Activities for BP1


• Monte Carlo simulations to identify the suitable sorbents

- Sorbent structure variation can provide absolute CO₂ capacities (15% CO₂ at 25°C) between 18-wt% (CO₂-N₂ separation factors of 15-20), and 12-wt% (CO₂-N₂ separation factor over 200)
- Confirmed through microbalance and breakthrough testing
- The regeneration process was optimized through cyclic testing
 - No loss in performance after multiple cycles, >8-wt% net CO₂ capacity
- Process simulation, integration with the host site, preliminary TEA
 - A detailed process simulation confirmed a power penalty of <16% of plant's output
 - A new CO₂ compression cycle for up to 20% reduction in energy needed for CO₂ compression
 - A detailed HAZOP and test site integration with TCM
 - A preliminary TEA indicating the potential for a capture cost of about \$30/MT

Breakthrough and Cyclic Testing

Typical Breakthrough Curve (25°C)

Breakthrough Curves at Different Temperatures

Process Simulation Summary (Retrofit)

- Simulation of the CO₂ capture plant integrated with the coal-fired power plant with Aveva's Pro^{II} software
- The feed and product conditions (for a 550 MW SCPC plant) are:
 - Flue gas: 74,092 kmol/hr, 57°C, 100 kPa, 68.1% N₂, 13.5% CO₂, 15.2% water
 - Product CO₂: 9,517 kmol/hr, 99% CO₂, 15,270 kPa
- Energy required for CO₂ capture and compression
 - Pumps, blowers and compressors: 54.8 MW
 - Lost electrical output in LP turbine: 24.2 MW
 - Total loss in electrical output: 79 MW
 - Electrical output loss as a percent of total output: 14.4%
- Very significant operational flexibility
 - Five capture modules for a 10,000 MTD plant
 - Continuous operation between 10 and 100% of design is possible

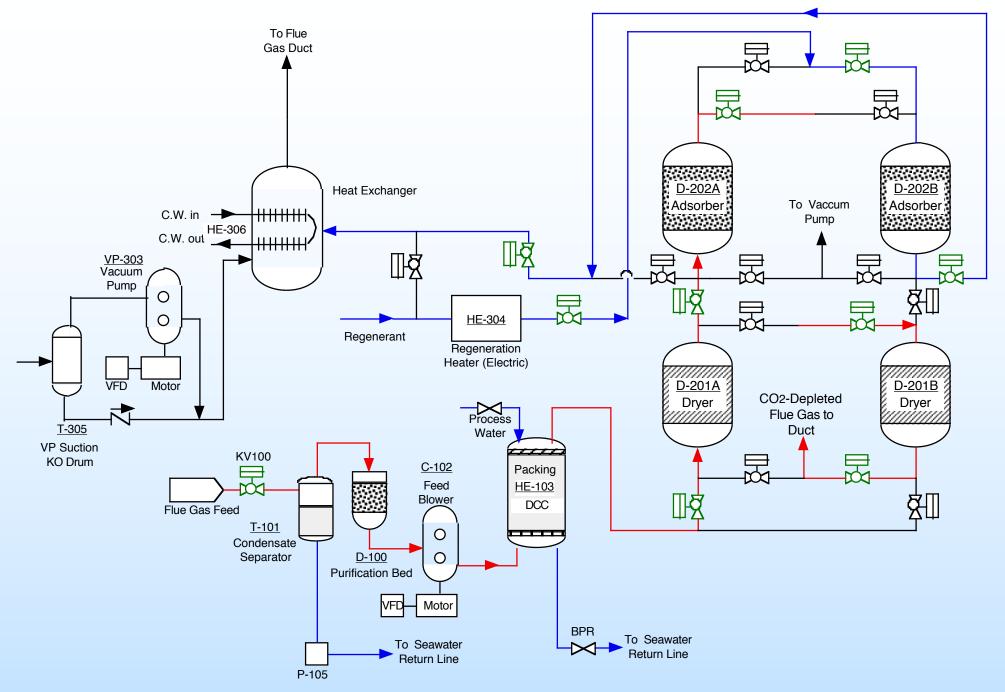
Techno-Economic Evaluation Summary (Retrofit) 550 MW SCPC Power Plant, 2.86 MM MT/year of CO₂ Captured

	Shell Cansolv	1 st Generation InnoSepra Process	2 nd Generation InnoSepra Process
Indicative TOC, U.S.\$MM	891	561	482
Power Loss Due to Steam Extraction, MW	70	32	24
Electrical Power (compression, auxiliaries), MW	67	67	55
Total Power Loss, MW	137	99	79
Power Loss as % of Base Output	25	18	14.4
CO ₂ Capture Cost at the plant gate, \$/tonne	62	41	34
CO ₂ Capture Cost including TS&M, \$/tonne	67	46	39

 10% capital recovery factor + 2.5% maintenance charge (7% CRF in 2019 Baseline Report), \$64/MWh replacement power, 85% on stream factor

• A capture cost of \$29/MT for the 2nd generation InnoSepra Process with a CRF of 7%

Higher capture rate, ~95%, for the InnoSepra Process not accounted for in the calcs

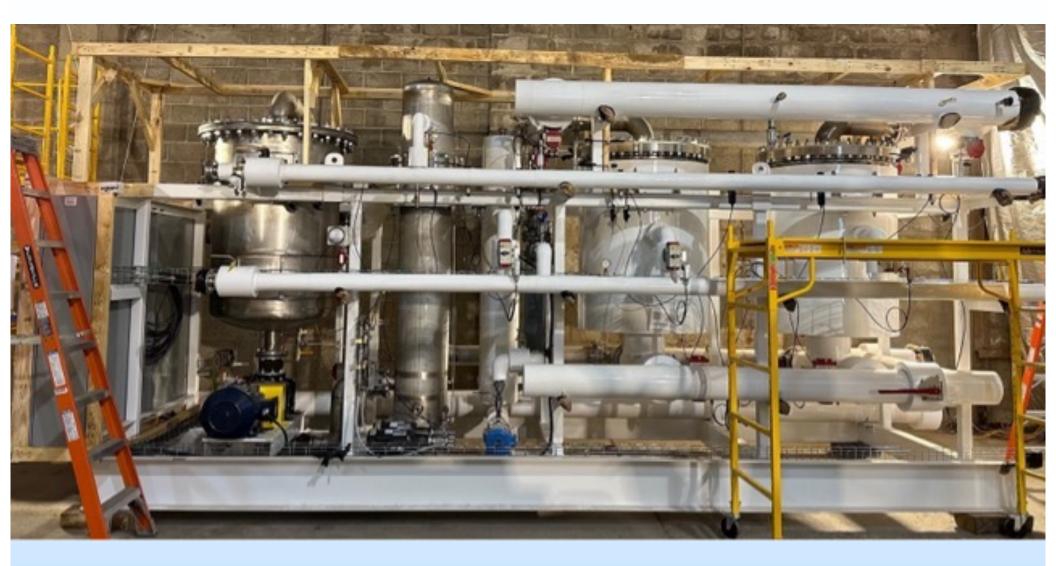

Key Activities for BP2

- Skid design and testing, field test report and updated TEA
- Most of the effort focused on bench unit fabrication including lab tests in support of skid design
 - Capable of processing 500 nm³/hr of flue gas
 - Designed as three separate skids
 - Each skid is about 8' w x 10' H and 25' L, about 12,000 lbs each
 - Very significant challenges due to fabrication resources, engineering resources, supply chain constraints leading to project delays

Bench Unit Status

- All the major components procured and sent to the fabricators
- All the skids completed and initial testing done at the fabrication site
- All the skids shipped to TCM
- The skids have been installed and the commissioning is underway

Process Flow Diagram for the Bench Unit


Bench Unit Design

- The bench unit was designed as three separate skids
- Skid 1 consists of the following
 - Feed purification: Removal of condensate as well as NO₂, SO_X, and aerosols
 - Feed compression and cooling
 - Feed drying

Skid 2 consists of the following

- Four adsorption beds for CO₂ separation from the flue gas
- The process cycle consists of: adsorption, regeneration, cooling and repressurization
- The four bed cycle allows continuous operation
- Skid 3 consists of the following
 - Vacuum pump for evacuation
 - Heating of regeneration medium
 - Cooling of CO₂ product

Photo of Skid 1 Prior to Shipment

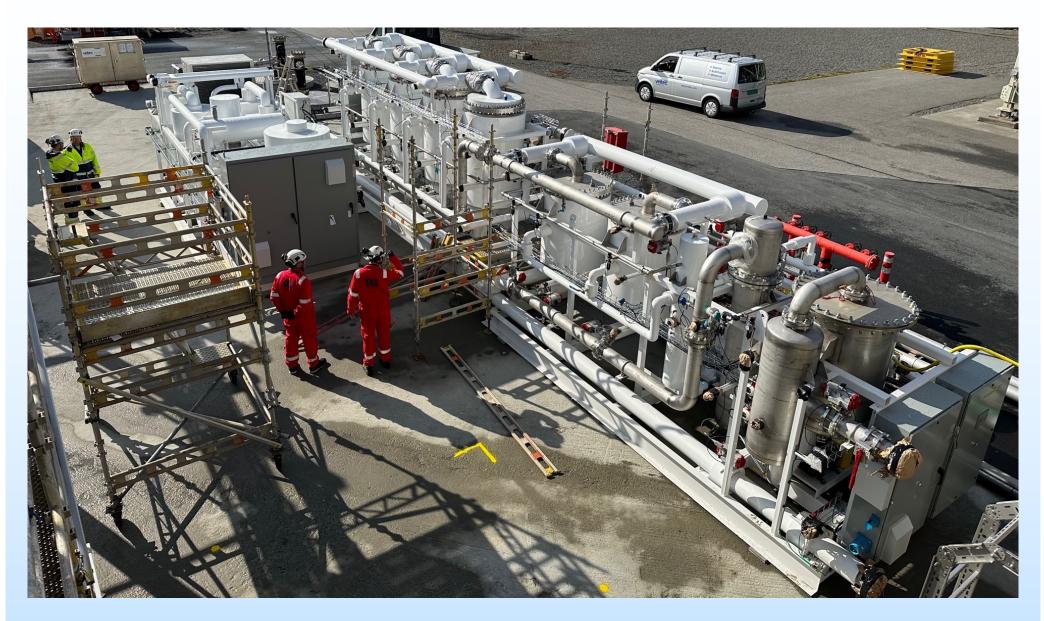

Photo of Skid 2 Prior to Shipment

Photo of Skid 3 Prior to Shipment

InnoSepra Test Unit at TCM

InnoSepra Test Unit at TCM

Test Plan

- A series of parametric tests are planned
 - CO₂ concentration: 4-12%
 - Flue gas flow rate: 300-500 nm³/hr
 - Dryer bed half cycle: 12-20 minutes
 - CO₂ adsorption time: 6-10 minutes
 - A total of over 20 tests at different process conditions
- A continuous test for about 200 hours is also planned

Remaining Project Tasks

- Updated detailed engineering design, capital and operating cost estimates
 - An engineering design for a 300 tpd capture unit using this technology was done for a customer and will form the basis for the updated design
- State Point Data Table
- Technology Gap Analysis
- EH&S Risk Assessment
- Final Technical Report

Plan for Future Testing / Commercialization

 Need one intermediate scale up after TCM testing to build commercial scale CO₂ capture plants

Steps towards technology commercialization

- FEED study for a 550-650 MW SCPC plant after the completion and analysis of field test results
- Further process demonstration at ~100 tonnes per day scale
 - 25X scale up over the current TCM pilot
- Once the process has been demonstrated at 100 tonnes per day scale
 - 1,000-2,500 tonnes per day CO₂ capture plants can be built with high degree of confidence

Summary

- The InnoSepra CO₂ capture technology, based on physical sorbents, has the potential for a significant reduction in the CO₂ capture cost for the power plant and industrial flue gases.
- During BP1 (based on lab testing & process simulation), InnoSepra demonstrated the potential of the technology to obtain 90-95% recovery and >98% purity CO₂ with >45% lower capture cost compared to solvent-based processes.
- During BP2, InnoSepra will demonstrate the technology at the Technology Centre Mongstad and use the test data along with process simulation and a TEA to evaluate the technology's potential for the reduction in parasitic power and capture cost.
- If the lab results are validated during field testing, the InnoSepra technology would represent a viable pathway for decarbonizing power and industrial sectors with a significantly lower green premium compared to solvent-based technologies.