

Advanced Structured Adsorbent Architectures for Transformative Carbon Dioxide Capture Performance

Project Number: DE-FE0031732

Kathy Fagundo, Program Manager – Electricore, Inc. Dr. Pierre Hovington, S. V.P., R&D – Svante, Inc. August 30, 2023

Svante

Project Overview

Cooperative Agreement No.: DE-FE0031732

Award Period: 05/01/2019 through 3/31/2023

○ Project Funding

- Total Funding: \$5,121,897.00
- Federal Funding: \$3,890,195.00
- Cost Share Funding: \$1,231,702.00

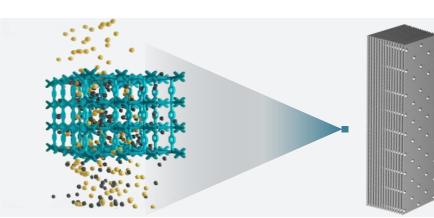
Project Participants

- Prime: Electricore, Inc.
- Technology, Design and Operation / Cost Share Provider: Svante, Inc.
- Techno-Economic Analysis (TEA): Susteon

o DOE-NETL Team

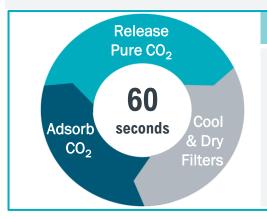
- Project Manager: Carl P. Laird & Andrew Jones
- Contracting Officer: Jacqulyn M. Wilson

Overall Project Objectives


- ➤ Develop an optimized and commercially feasible Mark II VeloxoTherm[™] CO₂ capture technology architecture, including:
 - Dual-adsorbent structured adsorbent design
 - Demonstrate the large-scale production of a MOF sorbent
 - Integrated process-intensified temperature swing adsorption (TSA) cycle
- Flow path architecture and bed construction capable of meeting a capture cost of \$30/MT of captured CO_{2.}

Svante

Svante's Technology


Nanomaterial

 Engineered to have very high capacity for CO₂

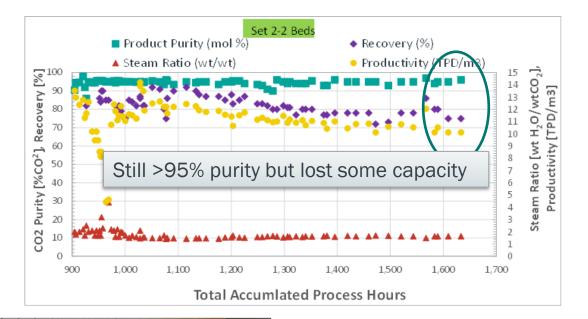
Structured Adsorbent

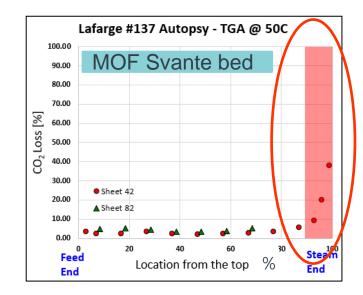
- Formed into thin films and stacked into a solid filter
- Repeatable, modular and scalable
- Platform for multiple sorbents
- Direct heating using low-grade steam

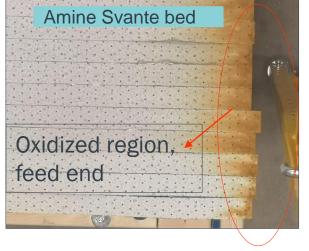
Capture Cycle and Process

- Continuous process capture CO₂, release it with steam, and prepare filters to capture CO₂ again
- Structured filters with thin-film technology enable rapid cycles of <60 seconds
- No aerosol and nitrosamines releases

Design


- Enables compact, low-cost contactor equipment
- Modular, repeatable filter design enables mass scalability.




Significant challenges to reach the target capture cost of ~30\$/ton:

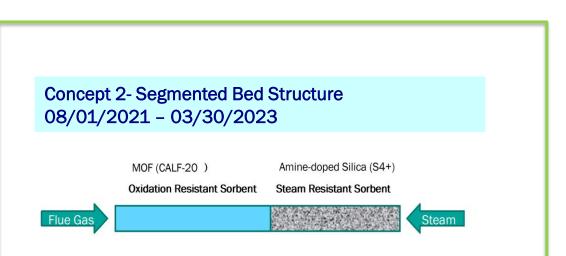
- Sorbent lifetime needs to be increased (5+ yrs.)
- Cost of sorbent needs to be low
- Regeneration energy of the process (mainly steam) needs to be minimized.

How Svante Structure sorbent can be improved ?

Only a small portion of the bed is showing significant degradation

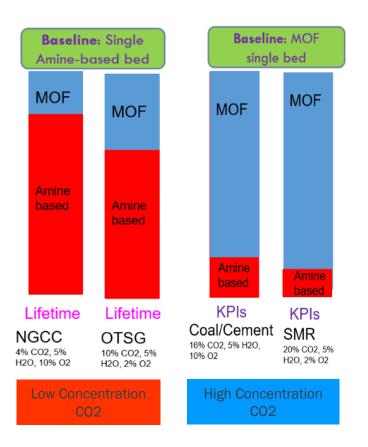
- Can we use a different sorbent or bed structure in those critical region?
- How can we model the flow and capacity at the interface?
- Can the two sorbents/structure be used during the same process?
- What optimization is needed in terms of coating parameters and bed permeability?
- > What would be the optimized length for each segment section?
- Can we extend the life of the bed and only removed the more affected area ?

Introductions – Concepts


- Designed a structure beds using multi-sorbents
- Take advantage of the Rapid Cycling VeloxoThermTM Technology with non-equilibrium conditions (RH, temperature, O₂) throughout the bed

Exploring two configurations of laminates :

Concept 1- Bilayer Structure
05/01/2019 - 07/31/2021


Structured		
Adsorbent	"Mark I" or "Mono-Layer	<u>"Mark II" or "Bi-Layer</u>
	1 Adsorbent	Adsorbent A
	TAUSOIDEIN	Barrier Adsorbent B

- Absorbent B can use the heat generated by Absorbent A ... Reduce steam

 Segmented bed concept matches the best sorbent to the position of the bed (based on RH and Temperature profile)

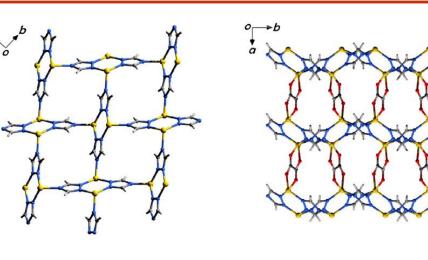
Concept 2 – Segmented bed Structure Adsorbents Budget Period 3

- Segmented bed concept matches the best sorbent to the position of the bed (based on RH, contaminants and Temperature profile)
- Amine-based sorbents degrade <u>faster</u> in dry conditions under an oxidative atmosphere.
- Direct integration to the actual Svante RAM and balance of plant technology.

Top of the bed:

-Low average RH, high oxidation for amines

-The best chemical environment for CALF-20 to be performed (High temp, low RH)


Segmented bed concept gives a chance to optimize CO_2 capacity and lifetime.

Scale-up of CALF-20 MOF First Large-Scale, "Commercial" MOF for CO2 Capture

• More than 10 tonnes of MOF manufactured so far at BASF. Metal Organic Framework (MOF)

CALF-20 – Zinc 1,2,4-Triazolate Oxalate

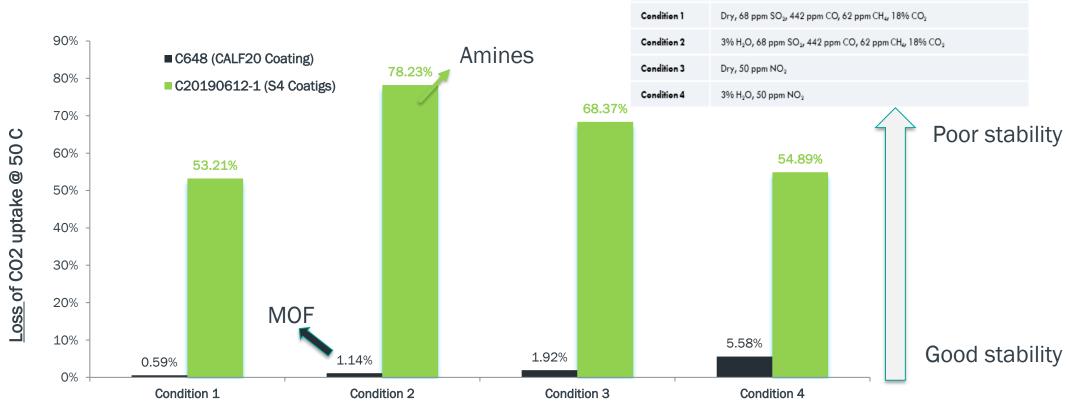
- Metal framework (Zn)
- Organic ligand (oxalate)

This MOF has very special properties:

- High volumetric and gravimetric CO₂ capacity
- Stable to water (liquid, steam)
- Stable to O₂ at high temperatures (tested at 150°C, 15d, Air)
- Easily scalable (low cost)
- Processable in a laminate
- More stable to NO_{χ} and SO_{χ}

• Paper published in <u>Science</u> (374 (6574), 2021).

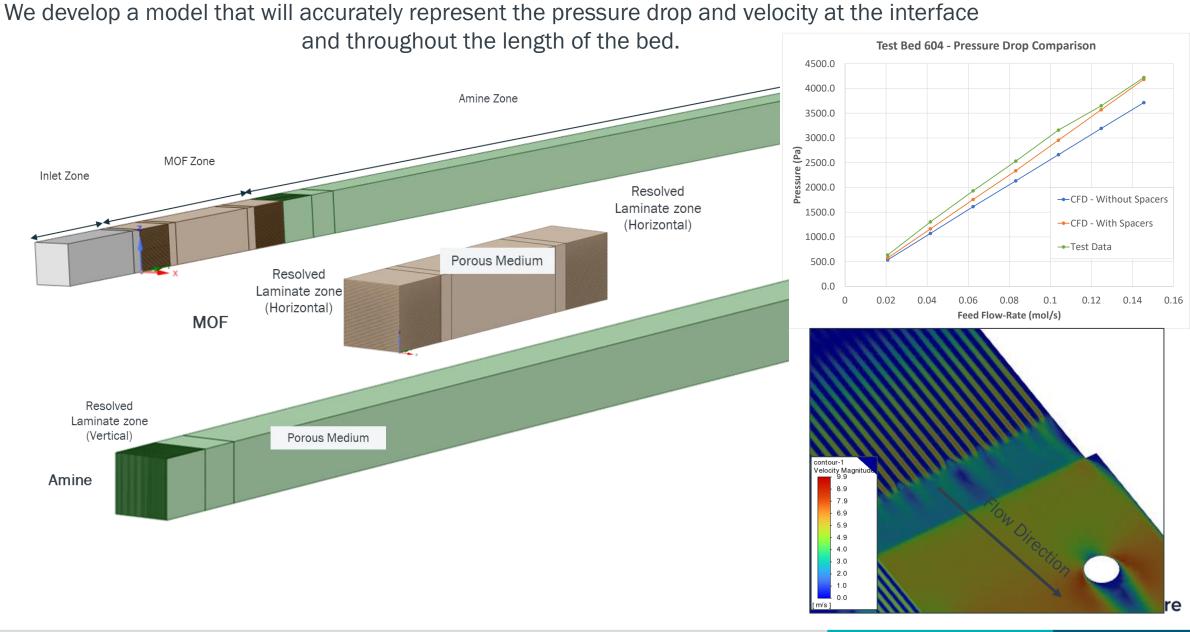
Svante



Gas Composition

Sorbents Sensitivity to Contaminants

• Flue gas compatibility study

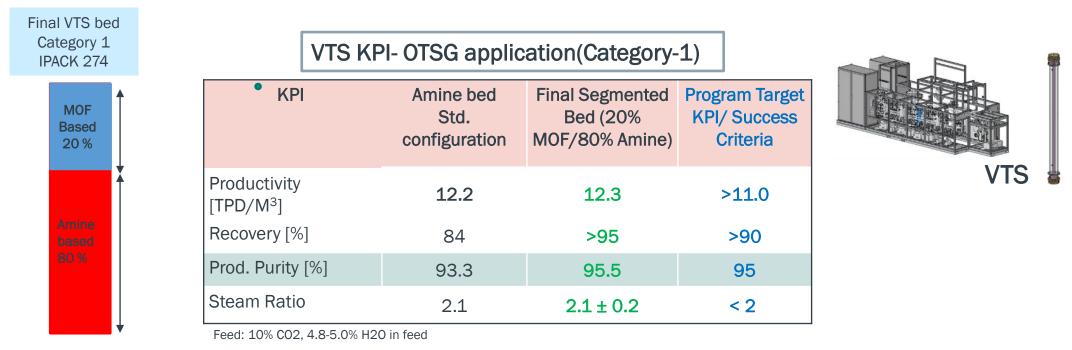

- Accelerated testing with 50ppm NO₂ and 68ppm SO₂ exposure for 24 hours was completed for the Calf20 and S4 *laminates*.
- Effect of water and other contaminants (typical of flue gas) was tested.

MOF (Calf20) laminate shows excellent tolerance to SOx and Nox, which opens this utilization for harsh flue-gas environments (ex., Cement)

Svante

Full Solid CAD Model

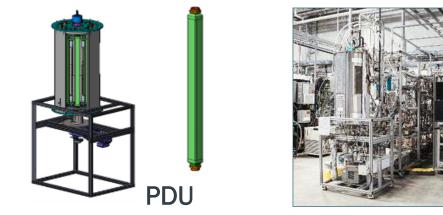
Category 1 Low Concentration CO_2 OTSG Application

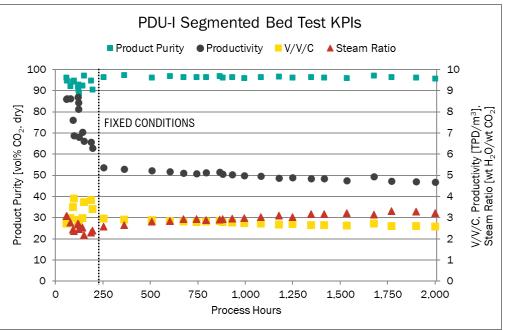


11

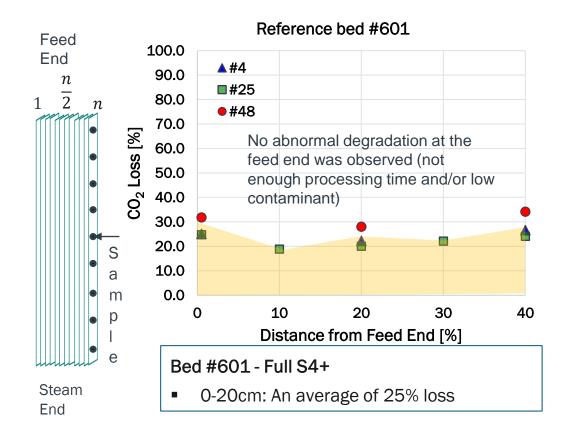
Segmented Bed Final VTS Bed-IPACK274 OTSG application & Success Criteria

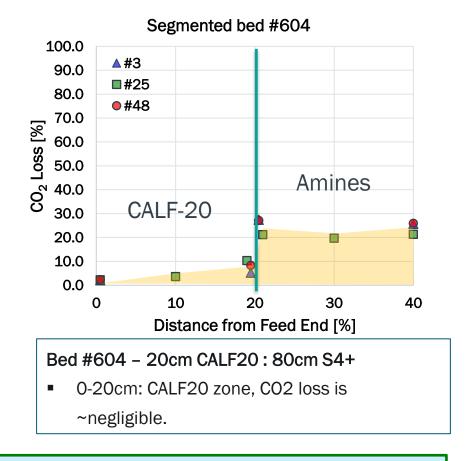
Final VTS bed with geometry output from Modeling and VTS test was built to verify and finalize PDU bed geometry in Category 1 [Low concentration]


These VTS results allow confirming that the model and test results were aligned. The PDU bed geometry was finalized at this stage, and the PDU testing is to study the bed lifetime of the Segmented bed on the OTSG application.

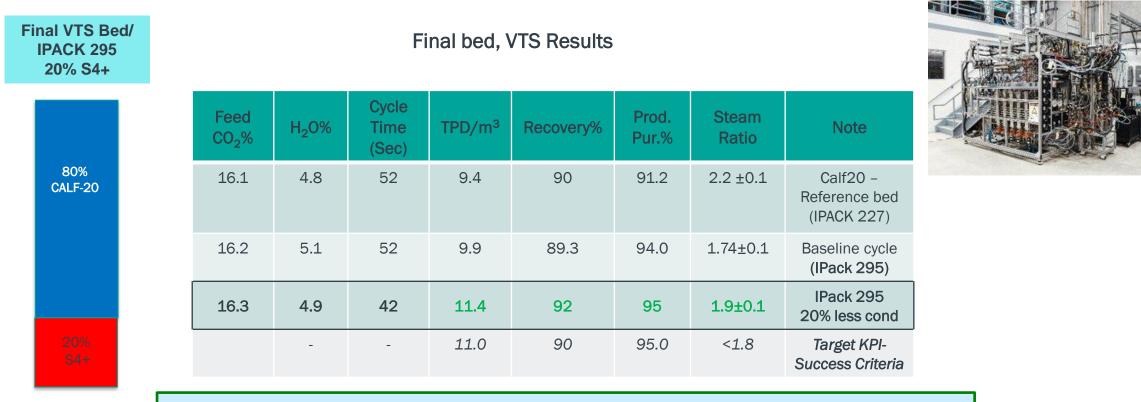

Category1 – Low Concentration CO₂ PDU Segmented Bed Performance & Success Criteria

Test Hours: 2000 hours reached with >90% uptime


	Project Target &Success Criteria	PDU @ 1.2 CPM (July 12)	PDU @ 0.7 CPM (July 19)	PDU @ 0.7 CPM (Fixed Conditions)
Feed CO ₂	8-12%	10.5%	10.4%	8.5%
Steam Ratio (kg/kg) (+/- 0.2)	≤2.0	2.4-2.7	1.9-2.2	2.2-2.7
Product Purity (v/v, dry)	≥95%	92-94% (98% achieved.)	92-97%	95-97%
Productivity (TPD/m ³) (+/-0.1)	≥ 10	8.7-10.1	6.6 - 7.7	5.1-6.1


- Testing Condition Fixed at slower cycle speed and lower Feed CO₂ concentration because of balance of plan limitation
- o testing units used to assess lifetime measurement (2000 hrs)

PDU-Post-Mortem Analysis- TGA Results


Svante

-Slow degradation on the feed end (MOF) in segmented design helps reduce the overall performance loss

Category 2 High CO₂ concentration 14-20%

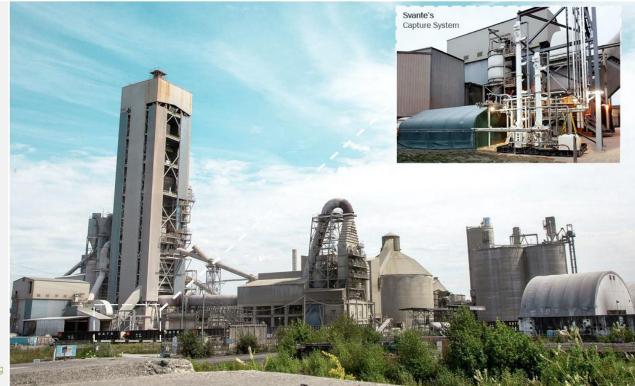
Segmented Bed Category 2 (High CO₂ Concentration) Final VTS Bed Results & Success Criteria

IPACK 295- segmented bed showing better performance as reference CALF20 with 20% less conditioning (lowering OPEX and CAPEX)

Svante

Svante

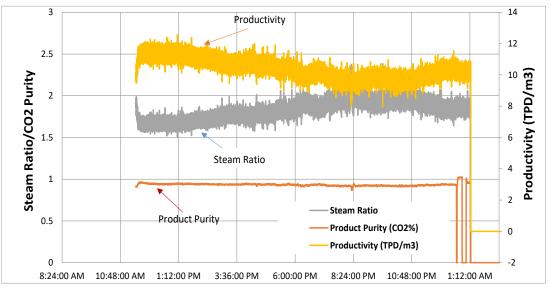
Segmented Bed Field Testing at Lafarge Cement application, 1 TPD


Svante

LafargeHolcim CO₂MENT Project, Vancouver, BC, Canada

Demonstrate a first full-cycle solution to capture and utilize CO_2 from a cement plant

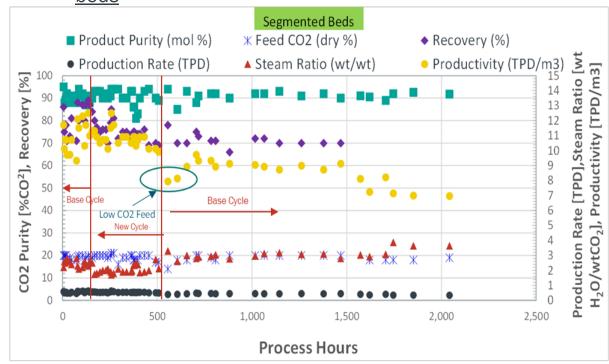
LOCATION **Richmond, BC, Canada** CAPACITY **1 tonne/day** PARTNERS



1TPD Beds – Category 2(High Concentration CO2) Base case KPI and durability testing

➢ KPI Testing

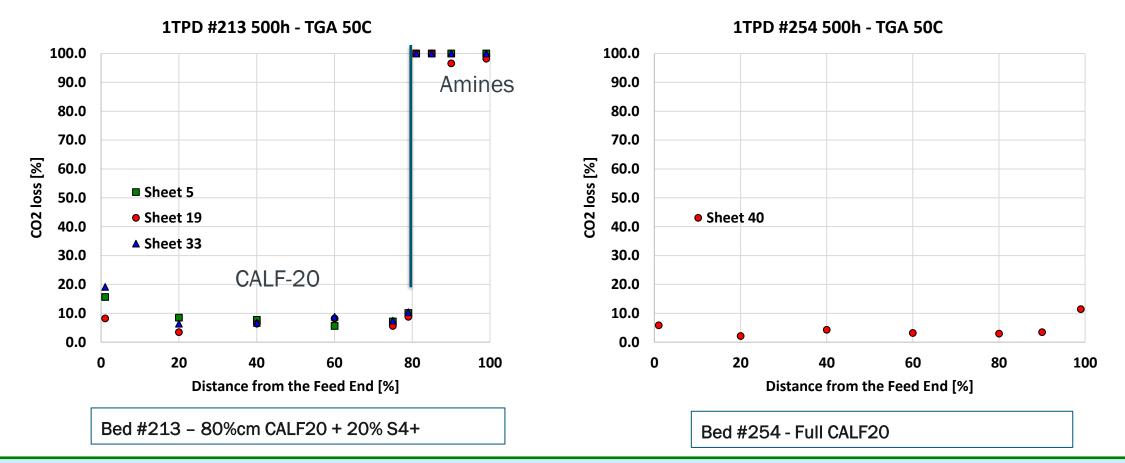
Following KPIs were achieved with 10-15% savings on conditioning flow vs. CALF20 beds at similar operating conditions


Feed CO2 % (19-20%)	Product Purity (CO2%)	Steam Ratio	Productivity (TPD/m ³)	CO2 Recovery			
Measured KPIs (1 TPD, Lafarge)	94-95%	1.7-1.9	10-12	85-90%			
KPI Targets-Success Criteria	95%	≤2	≥ 10	90%			

Durability Testing

2000 hours of operation accumulated so far on segmented

<u>beds</u>



Some drop in capacity was observed because of the effect of contaminants on the amines-based sorbent.

Svante

1 TPD/ Post-Mortem Analysis- TGA Results

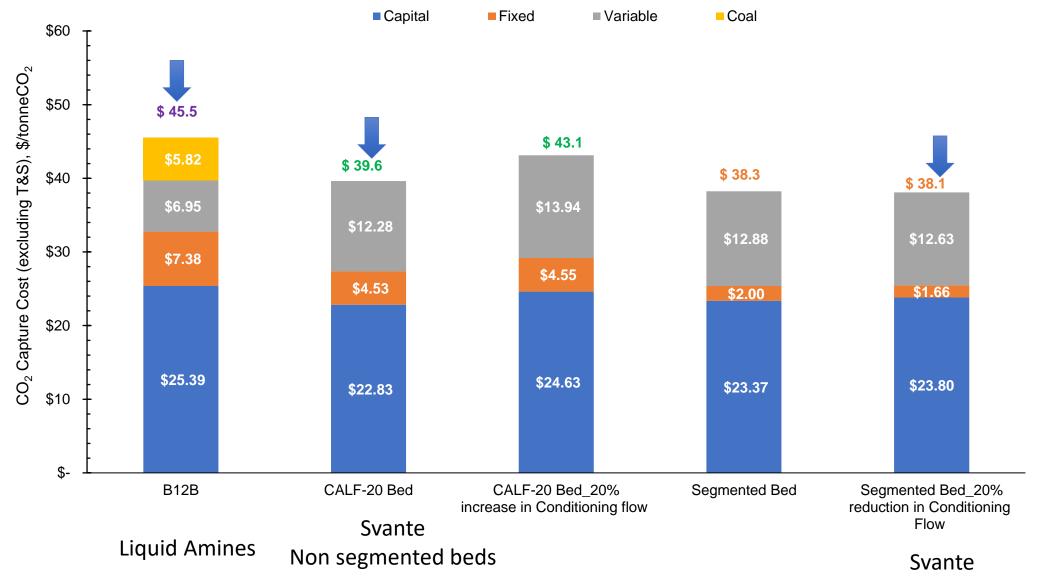
#254 - 100% CALF20

This bed is showing high CO2 capacity loss of the amines based section because of the presence of contaminants higher contaminants. MOF material is showing negligible lost after 500 hrs operation.

Svante

Techno-Economic Analysis

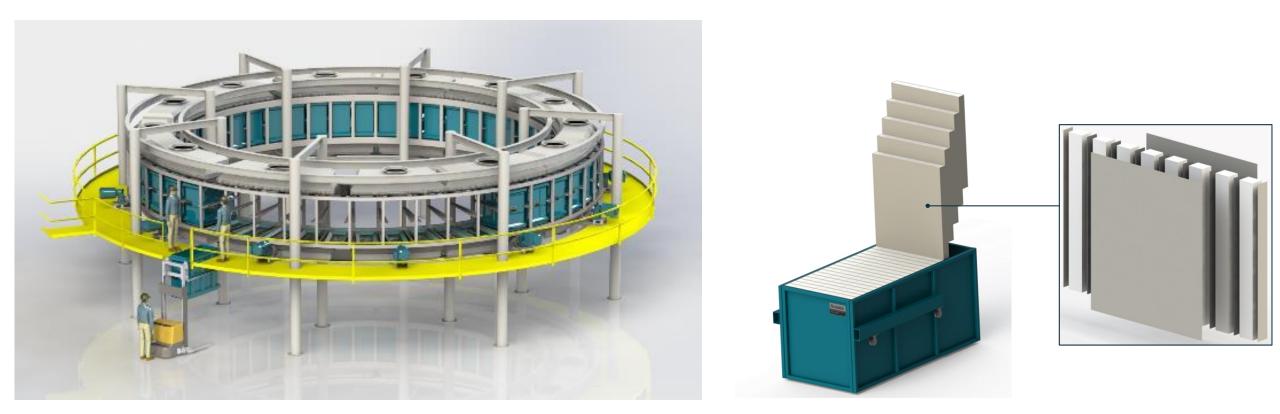
S. James Zhou, Senior Director Aravind Rabindran, Senior Engineer


TEA Assumptions

TECHNOLOGY MODEL		
ASSUMPTIONS		
Structure Adsorbent Bed(SAB)	Nooro	Refer to TEA-Bed
Life	years	lifetime Sensitivity
Steam Ratio ⁽¹⁾	Kg steam/kg CO_2	1.5 ⁽²⁾
Productivity (TPD/m ³)	%	12
Pressure drop	_	same

(1)-Steam required for bed regeneration.

(2)-Based on VTS test data and simulation at design basis of higher product vacuum (>20 kPag). The 1TPD pilot plant results were tested at much lower vacuum (< 2 kpag) and achieved a Steam Ratio of 1.7-1.9 on Segmented Bed (shown on Category 2 updated slide).


Summary for CO₂ Capture Cost (\$/tonneCO₂) Breakeven CO₂ sales Price

Segmented beds

Commercial Size Rotary Contactor – Series 1000

Segmented bed concept is already included in the design of the next generation RAM (500-1000 TPD)

Conclusions and Lessons learned

- This DOE funded program was key to de-risk and increase the TRL of Svante's carbon capture technology using solid sorbent and direct heat using innovative structure laminates
 - Scale-up, at tone scale, a ground braking sorbent based on metal-organic frameworks (CALF-20) stable in water/steam and contaminants.
 - Works on all aspects of the technology for the implementation of multiple sorbents/section at commercial scale (>500 TPD) (segmented bed concept, BP2 and BP3)
 - Demonstrating using TEA, a cost of CO2 capture of \$38.1/tonne, a decrease of 18% vs actual technology (B12B case)

Lessons Learned

- Amine-based material is much more sensitive to contaminants then CALF-20 which would require more pretreatment if use in a segmented bed configuration.
- Representative field-testing is key to assess KPIs AND lifetime (fluctuation in CO2 concentration and contaminant level)
- Field Testing (customer) can take much more time (emitter maintenance and or day-to-day load variation)

Svante

Acknowledgment

This project was made possible by the support and hard work of an amazing team, including:

> DOE/NETL

- Andrew Jones
- Carl P. Laid
- Jacqulyn M. Wilson

Susteon

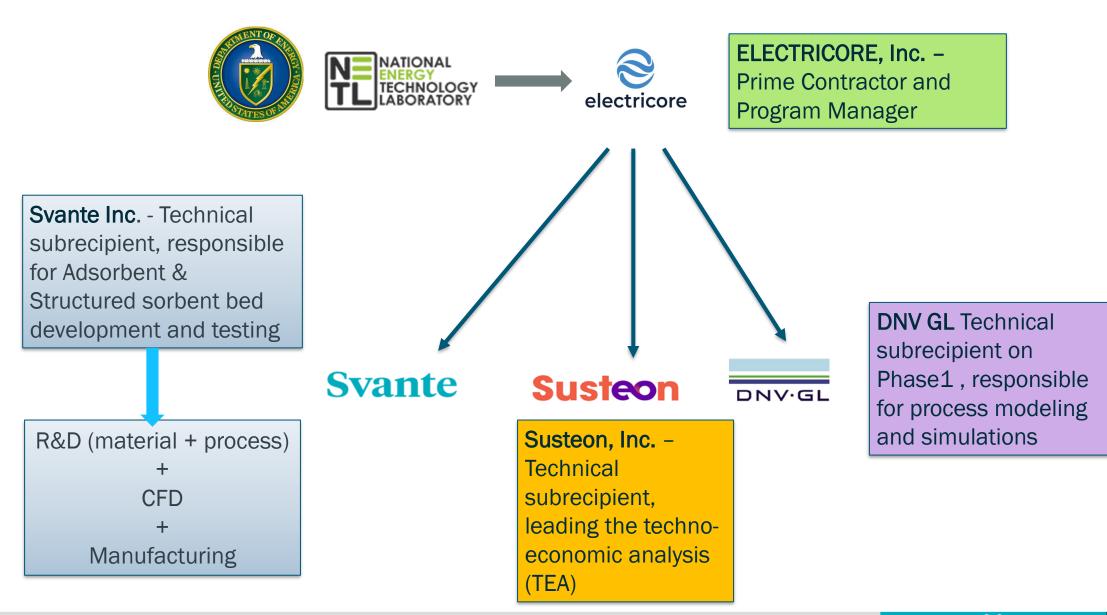
- Ragubir Gupta
- ➢ S. James Zhou

> BASF

Stefen Marx

> Electricore

- Deborah Jelen
- Sara Odom
- ➤ Kathy Fagundo


Svante R&D team

- Zahra K.
- > Andrew L.
- > Omid N.G.

Appendix A: Organization Chart

Appendix B: Program Schedule

Task Name						2022						
						Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 15.0 – Segmented Bed CALF2	20/S4+(Gen 1) - Structu	ured Adsorbent Bed D	Development									
15.1 Optimize each Segment coa	ating (density, thickness	5)										
15.2 CALF20 & S4+ Segments le	ength study Optimizing	(each Segment lengt	th) for each o	ategory								
15.3 Develop bed packaging for s	segmented bed concep	ot										
Task 16.0 – Segmented Bed CALF2	20/S4+(Gen1) - Proces	s cycle Development	and optimiza	tion for higher KPIs/longe	r bed lifetim							
16.1 Bench-scale VTS testing												
16.2 VTS beds data analysis												
Task 17.0 – Segmented Bed CALF2	20/S4+ - Modeling of se	egmented bed to guid	le the bed des	ign/process optimization								
17.1: Modeling & simulations of in	ndividual segment											
17.2: Segmented bed simulation	and optimization		bo									
17.3: Test data analysis and mod 17.4 2D modeling & simulation Task 18.0 – VTS beds Autonsy, cha	lel verification for final s	egmented bed optimi	ization									
17.4 2D modeling & simulation	CFD: Ongoing	~p/										
Task 18.0 – VTS beds Autopsy, cha	racterization in detail a	nd report										
 Task 19.0 – High recovery mapping 	on final segmented be	dsc										
19.1 : Category 1/ 10% CO2 - Hig	gh recovery mapping	N.S.										
19.2 : Category 2/ 16-17% CO2 - High recovery mapping												
Task 20.0- Design and fabrication of multiple structured adsorbent beds for multi-bed cyclic steady-state performance assessmen		assessmen [,]										
20.1: Sets of up to 8 or more full-	length adsorbent beds	will be produced, fab	ricated, and c	onstructed								
20.2: Process cycle design and mechanical implementation												
Task 21.0- In-House PDU testing, d	lata analysis, model ver	rification and report										
21.1: Unit commissioning and ba	se case KPI demonstra	ation testing of segme	ented bed	PDU Test: Ongoing								
21.2: Durability test of segmented	d beds			PD0 Test: Ongoing								
Task 22.0- 2 PDU beds Autopsy, ch	aracterization in detail	and report										
Task 23.0- Design and Fabrication of optimized segmented bed for 1 TPD unit					_							
23.1: Design of 1 TPD segmented bed												
23.2: Fabrication of 1 TPD segme	ented beds/55 beds		1 TPD Bed B	uilding: Ongoing								
Task 24.0- Process testing the optin	nized segmented bed u	unit										

27