

ROTA-CAP[™]: An Intensified Carbon Capture System Using Rotating Packed Beds

Osman M. Akpolat, *R&D Manager*

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 28-September 1, 2023

DOE Contract No. DE-FE0031630

Outline

- Project Overview
- Technology Background
- Technical Approach Discussion
- Progress and Current Status
- Summary

Project Overview

GTI Energy: 80-year history of turning raw technology into practical energy solutions

Across the entire energy value chain

CCUS is one of GTI Energy's Strategic Focus Areas

Project Review Meeting, August 18, 2021

ROTA-CAP[™] – An Intensified Carbon Capture System Using Rotating Packed Beds

• Sponsor

- Funding: \$3,379,989 DOE (\$848,220 co-funding)
- Objective: The objective of this project is to develop and validate a transformational carbon capture technology—ROTA-CAP[™]

• BP1: 10/1/2018 – 3/31/2021 BP2: 4/1/2021 – 9/30/2023

ROTA-CAP[™] – DOE/NETL Project Objectives and Members

- Design, construct, test and model novel rotating packed bed (RPB) absorbers and regenerators
- Assess the performance of the integrated hardware and solvent under a range of operating conditions
- Test with simulated flue gas at GTI Energy
- Long term test with real flue gas at the National Carbon Capture Center (NCCC)

ROTA-CAP[™] – Process Intensification (PI)

- ROTA-CAP[™] uses compact rotating packed bed (RPB) absorbers and regenerators for contacting flue gas with an advanced solvent such as Carbon Clean's CDRMax [®] for carbon capture
- RPB technology substantially reduces the size and therefore cost and footprint of the CO₂ capture plants
- Well over 1000 h operating experience achieved over several test campaigns

Counter current contact:

- Solvent is distributed from inner radius to outer radius under centrifugal force generated by rotation of the packed bed.
- Gas flows from outer radius to inner radius of packed bed.

Technology Background

ROTA-CAP[™] – Rotating Packed Bed Design

 GTI Energy and its predecessor institutions GRI and IGT has experience on RPB process technology for natural gas dehydration and bulk acid gas removal process design and operation.

- GTI Energy Engineering Team reviewed mechanical requirements of the RPB sizing submitted by Carbon Clean.
- GTI Energy prepared initial RPB design concept, mechanical design of RPBs for construction and worked with our fabricator as well as in house construction team to build the test skid.

GTI-RPB

concept Rev. 1

Gas In

Gas Out 🗲

Rotor Seal

Liquid In

06/11/2019

Technical Approach

Test Equipment

 50kWe (1000kg/day CO₂ removal) scale integrated carbon capture skid

3D Layout of the	
ROTA-CAP [™] Test S	kid

Test Campaign Targets	Duration
Simulated gas parametric testing	1-month test
Natural gas burner flue gas at NCCC	1-week test
Long-term testing at NCCC	Cumulative 1000 hr

Test Skid Construction at GTI Energy

RPB Absorber and Regenerator Design

Test Skid Construction

Packing Material for RPB by Montz

Test Skid Construction at GTI Energy

Absorber RPB's and Flue Gas Piping

ROTA-CAP[™] – Bench Scale Test Skid

Integrated (<u>RPB absorber and RPB regenerator</u>), Continuous, Bench-scale, 1 TPD test skid at GTI

Progress and Current Status

ROTA-CAP[™] Process Flow Diagram (PFD)

Simplified

ROTA-CAP™ PFD

ROTA-CAP[™] has two stages of absorber RPB and one regenerator RPB with a separate reboiler.

Test Skid Construction at GTI Energy

Absorber RPB's and Flue Gas Piping

ROTA-CAP[™] – Transportation from GTI to NCCC

ROTA-CAP[™] – Test Skid at NCCC

ROTA-CAP[™] – Field Testing at NCCC

ROTA-CAP[™] – Test Results

ROTA-CAP[™] – Parametric Testing at GTI Energy

- Key Variables:
 - Absorber and Regenerator RPMs
 - CO₂ Concentration and Circulation rate
 - Regenerator Operation

Total lab operation: About 400 hours

Parameter	Range Tested at GTI Energy
CO ₂ Inlet Concentration	2.12 to 13.2%
Solvent Circulation Rate	0.5-1.8 GPM
Absorber and Regenerator Speed	Up to 600 RPM
Solvent Concentration	40% to 60% solvent
Gas Flow Rate	100 to 400 lb/hr

ROTA-CAP[™] – SSTU Tests at NCCC (Fall 2021)

- Solvent concentration levels between 35% and 55%
- Fuel gas CO₂ concentration: Coal Flue Gas at 11.9%
 - NG Flue Gas at 4.4% NG Flue Gas at 10.1%
- L/G range between 1 and 4

Data Analysis:

- Conventional column is unable to sustain stable operation above 55% concentration.
- Removal efficiency is similar in ROTA-CAP[™] to the much larger conventional column.
- Lean loading impacted ROTA-CAP[™] at lower L/G ratios when compared to the conventional column.
- Focus on ROTA-CAP[™] regeneration optimization.

ROTA-CAP[™] – Field Testing at NCCC

- Completed 1000+ hours of operation with ROTA-CAP bench scale test skid with flue gas at more than 9.8% CO_2 concentration.
- The skid operated continuously 24 hours a day,
 7 days a week for 7 test campaigns ranging from
 2 to 3¹/₂ weeks each campaign.
- During these campaigns, seal, bearing, liquid pump, and material compatibility issues were resolved.
- Data to determine bearing life, maintenance, and solvent circulation performance as well as solvent usage and degradation were collected.

Total field operation: >1600 hours

ROTA-CAP[™] – Field Testing at NCCC

7 Test Campaigns					
Test	Date	Feed	Op. Hours		
1	October 2021	NCCC Boiler: NG Flue Gas (parametric)	120		
2	March 2022	NCCC Boiler: NG Flue gas	150		
3	April 2022	Power Plant: Coal Flue Gas	200		
4	June 2022	Power Plant: Coal and Coal + NG Flue Gas	450		
5	August 2022	Power Plant: Coal and Coal + NG Flue Gas	360		
6	March 2023	NCCC Boiler + CO2 enrichment: (parametric)	260		
7	June 2023	NCCC Boiler + CO2 Enrichment Industrial Flue Gas	130		

- Can achieve >95% capture for different types of flue gases. Operated between:
 - -4% CO₂ as indicative of NGCC flue gas applications
 - -22% CO₂ as indicative of industrial flue gas applications.

Parametric Testing at NCCC

- Achieved >90% capture for different types of flue gases.
 - -4% CO₂ as indicative of NGCC flue gas applications
 - -22% CO₂ as indicative of industrial flue gas applications.
 - -Balance NCCC Flue Gas
- System was operated at 0.3-0.5 T/d for these tests

Long-Term Testing at NCCC

- Stable performance during 455hour testing with >95% CO₂ capture efficiency.
- System was operated at 0.3-05 T/d for these tests.
- ROTA-CAP capture rate of >95% can be increased with
 - -Increasing L/G ratio
 - Increasing the packing volume
 - Increasing the rich solvent temperature to the regeneration unit

High CO₂ Testing at NCCC

Test Campaign 7:

- Operated with 20% (vol.) CO₂ containing flue gas at NCCC.
- Started with 90% removal rate.
- After 26 hours adjusted L/G and obtained 95% removal rate.
- Operated for 100 hours at 95% capture from 20% (vol.) CO₂ flue gas.

Performance Improvements

Fall 2022:

• Changed elastomer for seals and achieved much longer

Spring 2023:

- Upgraded lean/rich heat exchanger
- Increased regenerator packing
- Achieved ~6% increase in Capture efficiency
- Improved liquid level control
- Achieved better solvent management and more stable operation

ROTA-CAP[™] – Field Testing Learnings

- RPBs are very responsive to operations.
 - Skid startup and shutdown takes a few hours.
 - Steady-state operation achieved within 45-60 minutes.
- High viscosity liquid circulation is not a problem in the RPBs.
- Solvent viscosity determines liquid level control and solvent circulation pumps specifications.
- Insulation and heat management is important for good regenerator performance.
- Solvent inventory is about 20% of equivalent capacity conventional column skids (based on NCCC experience).
- RPB reactors can be used with water lean solvents.

ROTA-CAP[™] – Future Development

Envisioned Technology Development Path and Scaleup Potential

Scaleup potential: Currently a large RPB processes 150,000 m³/h, a target of 500,000 m³/h gas capacity is possible. This would be equal to 5,000 TPD for an industrial application with 13 vol% CO₂

Application	Gas flow rate (m ³ /h)	CO ₂ concen. (vol%)	CO ₂ capture capacity (TPD)	ROTA- CAP trains needed
Power plant (685 MWe gross)	2,500,000	~12.5	13,900	5
Cement plant	435,000	~20	3,900	1
Steel plant	250,000	~22	2,450	1
SMR H ₂ plant	480,000	~19	4,000	1

Acknowledgements

• Financial Support

• DOE NETL

Bruce Lani Andrew O'Palko Carl P. Laird Lynn Brickett José Figueroa Dan Hancu

NCCC Team

Disclaimer

This presentation was prepared by GTI Energy as an account of work sponsored by an agency of the United States Government. Neither GTI Energy, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.

solutions that transform

GTI Energy develops innovative solutions that transform lives, economies, and the environment

www.gti.energy

Osman Mehmet Akpolat

R&D Manager, Carbon Management and Conversion GTI Energy | solutions that transform +1 847.768.0597