# Chevron natural gas carbon capture technology testing project

Cooperative Agreement No. DE-FE0031944 August 29, 2023

Scott McLemore, P.E.

company

i kal

enere

### **Project overview**

#### **Award Period**

• 10/01/2020 through 08/30/2024

#### **Project Funding**

- Total Funding: \$22,189,674
- Federal Funding: \$13,000,000.00
- Cost Share Funding: \$9,189,674 (Cash Contribution by Chevron)

#### **Project Participants**

- Chevron U.S.A. Inc., Prime Contractor, host site and cost share provider
  - Principal Investigator: Scott McLemore
  - Project Manager: Stan Cross
- Technology Provider: Svante, Inc.
- ISBL Engineering, Procurement and Construction: Kiewit Engineering Group Inc (KEGI) and Kiewit Power Constructors (KPC)
- Program Administrator: Electricore, Inc.
- Plant Operation and Maintenance: Offshore Technology Services (OTS)

#### **DOE-NETL Team**

 Grants Officer: Lisa Kuzniar, Project Manager: Nicole Shamitko-Klingensmith, Contracting Specialist: Kelly Haught





### **Project objectives**

The project will validate a transformational solid sorbent carbon capture technology at engineering scale under indicative natural gas flue gas conditions and continuous long-term operation at Chevron's Kern River oil field

- Successfully complete the design, construction, commissioning, and longterm testing of an engineering scale plant of approximately 25 tonnes per day (TPD) under steady-state conditions at varying flue gas carbon dioxide (CO<sub>2</sub>) concentrations (~4–14%);
- Conduct a techno-economic analysis (TEA) on the VeloxoTherm<sup>™</sup> technology as integrated into a nominal 550 MW (net) natural gas combined cycle (NGCC) power plant;
- Conduct a comprehensive gap analysis addressing the current stage of VeloxoTherm<sup>™</sup> technology development for NGCC application; and
- Summarize the research, development, and demonstration requirements to close identified gaps to approach achievement of DOE's carbon capture performance goal of CO<sub>2</sub> capture with 95% CO<sub>2</sub> purity at a cost of \$30/tonne of CO<sub>2</sub> captured by 2030.





### Kern River carbon capture plant

San Joaquin Valley, CA USA Natural gas-based flue gas testing

Understand and measure capture plant performance on boiler, NGCC and SMR feed flue gas

Skid-mounted modular design carbon capture plant

New metallic organic framework (MOF) sorbent beds

95% CO<sub>2</sub> product purity and lower steam ratio compared to conventional solvent technology



Flue gas module

**Conditioning module** 



#### **Project location — Kern River Oilfield**

Reducing the carbon intensity of our operations through scalable demonstration projects

#### **2.3 BBOE cumulative production** 60% OOIP (3.7 BBOE)







### SJVBU GHG emissions 2022





### **Svante Carbon Capture Technology**

Vision for next generation commercial scale plant



#### Solid Sorbents (MOFs)

Engineered to have high selectivity over water & high capacity for CO<sub>2</sub>.



#### Nanoengineered Carbon Capture Filters

Solid sorbents laid onto thin sheets of film & stacked to create a filter.



#### **Carbon Capture Plant**

The overall design, integration and optimization of the entire  $CO_2$  capture plant that goes around the machine and process cycle.

### Rotary Adsorption Machine (RAM) with Filters Inside

Solid sorbents laid onto thin sheets of film & stacked to create a filter.





#### **CALF-20 Metal Organic Framework**

#### **Current Status of Process Development**

### CALF-20 MOF



- Current application range between 8-25 % CO2
- Main process characteristics:
  - Intrinsically lower regeneration energy compared to absorption process
  - No secondary degradation products detected due to stability of the structure reducing environmental impact to a minimum (emissions to air, waste, etc.)
  - Regeneration taking place at vacuum allowing the use of nonutilized low value heat for regeneration not usable by current state of the art technologies
  - Flexible performance for processes allowing tight load following
- Carbon Capture plants using Svante Carbon Capture Ecosystem with CALF-20 currently in FEL2/FEL3
- Process improvements currently being validated:
  - Further reduce vacuum pressure regeneration reducing energy requirements further
  - Simplification of cycles reducing electricity consumption
- Research into developing new MOF for lower concentrations



#### 

### **Svante Technology Comparison**

|                                                   | Svante's Solid Adsorbent                                                                                                                                                                                                    | System comparison                                                                            |  |  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Technology Description                            | <ul> <li>Separation relies on adsorption of CO<sub>2</sub> onto a solid surface</li> <li>Regenerated using direct steam in an intensified temperature/concentration swing process that enables very rapid cycles</li> </ul> |                                                                                              |  |  |
| Modularization and Scalability                    | Adaptable and cost efficient at all scales due to the repeatability of the modular design                                                                                                                                   |                                                                                              |  |  |
| Ability to Deal with<br>Intermittency of Emitters | High – rapid cycle speed                                                                                                                                                                                                    |                                                                                              |  |  |
| Toxic Fugitive Emissions                          | None – solid sorbent                                                                                                                                                                                                        |                                                                                              |  |  |
| Capital Intensity                                 | Low – modular construction                                                                                                                                                                                                  |                                                                                              |  |  |
| Potential for Further Cost<br>Reduction           | New solid-state technology poised for significant cost reduction learning curve                                                                                                                                             | Svante's SolidConventional CarbonAdsorbent TechnologyCapture TechnologyUsing Liquid Solvents |  |  |



#### **Svante technology evolution**

technology is in year 6 of piloting, focus is acceleration of learnings in development of industrial solutions



### **Technical approach**

#### The project will be conducted in three (3) budget periods

- ☑ Budget Period 1
  - Process Engineering
  - Design Criteria
  - ☑ Sorbent Certification

#### Budget Period 2

- Detailed Engineering
- Procurement, Fabrication and Installation
- Pre-Startup Safety Review, Commissioning and Test Planning

#### Budget Period 3

- Engineering Scale Testing and Analysis, (In Progress)
- Technology Assessment





#### **Progress and current status**

### Project has completed construction and is in operation:

- Initial commissioning with test beds completed
- Full site commissioning completed
- Plant Start-up and Ramp-up completed
  - Includes operator training, commissioning and plant start-up to name-plate capacity
- Operation of the 14% Indicative Coal Flue Gas Feed Testing in progress (30-day run)







#### **Progress and current status**



Field construction work is complete and now in operation



#### **Completed and commissioned skids**





Field construction work is complete and now in operation



#### Progress and current status of project HMI of Plant Operation





#### Progress and current status of project HMI of Plant Operation





# Structured absorbent bed (SAB) manufacturing progress



MOF SABs in RAM



2<sup>nd</sup> set of SAB in storage at Svante



### Project milestones – budget periods 2 & 3

| Milestone log    |      |                                                                  |                               |                              |                                            |  |  |
|------------------|------|------------------------------------------------------------------|-------------------------------|------------------------------|--------------------------------------------|--|--|
| Budget<br>period | Task | Milestone<br>description                                         | Planned<br>completion<br>date | Actual<br>completion<br>date | Verification<br>method                     |  |  |
| 2                | 4.0  | Detailed Engineering                                             | 12/31/2021                    | 12/31/2021                   | RPPR File                                  |  |  |
| 2                | 4.1  | Rotary Seal Validation Testing                                   | 07/26/2021                    | 09/14/2021                   | Design Validation Test Report Submitted    |  |  |
| 2                | 5.1  | Sorbent Procurement (Phase II)                                   | 12/31/2021                    | 01/14/2022                   | Purchase Order and Receiving Report        |  |  |
| 2                | 5.3  | SAB Manufacturing                                                | 09/30/2022                    | 06/14/2022                   | Hardware Shipment                          |  |  |
| 2                | 5.4  | Shop testing and inspection report                               | 05/31/2022                    | 05/31/2022                   | Shop testing and inspection report file    |  |  |
| 2                | 5.5  | System Installation                                              | 08/18/2022                    | 08/08/2022                   | Turnover Package                           |  |  |
| 2                | 6.1  | Pre-Startup Safety Review (PSSR)                                 | 09/30/2022                    | 08/08/2022                   | Continuation Application                   |  |  |
| 2                | 6.3  | Test Plan                                                        | 07/18/2022                    | 07/19/2022                   | Final Test Plan                            |  |  |
| 3                | 7.1  | Start-up and operator hand-off                                   | 08/21/2023                    |                              | RPPR File                                  |  |  |
| 3                | 7.2  | Parametric testing and steady state operation performance report | 02/06/2024                    |                              | Updated Test Report                        |  |  |
| 3                | 7.3  | 14% Indicative Coal Flue Gas Feed Testing                        | 10/15/2023                    |                              | Preliminary Test Report                    |  |  |
| 3                | 7.4  | 4% Indicative NGCC Flue Gas Feed Testing                         | 11/15/2023                    |                              | Updated Test Report                        |  |  |
| 3                | 7.6  | System Decommissioning                                           | 05/15/2023                    |                              | Final Report file                          |  |  |
| 3                | 8.1  | Technology EH&S Risk Assessment                                  | 05/28/2024                    |                              | Topical Report and summary in Final Report |  |  |
| 3                | 8.2  | Techno-Economic Analysis (TEA)                                   | 02/06/2024                    |                              | Topical Report and summary in Final Report |  |  |
| 3                | 8.3  | State-Point Data Table                                           | 08/26/2024                    |                              | State-Point Data Table file                |  |  |
| 3                | 1.0  | Draft Final Report                                               | 05/28/2024                    |                              | Final Report file                          |  |  |





### **Final test plan**

#### FINAL test plan covers the performance testing of SOPO objectives

- 1. Plant Start-up and Ramp-up Includes operator training, commissioning and plant start-up to nameplate capacity based on an ~8% CO<sub>2</sub> feed flue gas composition.
- 2. 14% Indicative Coal Flue Gas Feed Testing Includes the indicative coal-fired flue gas feed testing by recycling part of the  $CO_2$  product back to the feed flue gas to increase the  $CO_2$  concentration to ~14% under a steady state.
- 4% Indicative NGCC Flue Gas Feed Testing Includes the indicative natural gas-fired combined cycle (NGCC) flue gas feed testing by introducing air to dilute the feed gas CO<sub>2</sub> concentration to ~4% under a steady state.
- 4. Base Performance and Steady State Testing Includes base performance on an ~8% CO<sub>2</sub> feed flue gas composition under a steady state. This will be the basis of the acceptance test.
- 5. Load Following & Intermittence Testing –Includes assessment of the project technology to provide quick start-up and shutdown capabilities, and simulated load following, and high turndown ratio performed on the slip stream of flue gas from the existing natural gas-fired steam generator at ~8% CO<sub>2</sub> concentration.



### Thank you

## Thank you to our project sponsors

U.S. Department of Energy

Office of Fossil Energy and Carbon Management

NETL – National Energy Technology Laboratory Grants Officer Lisa Kuzniar

Program Manager Nicole Shamitko-Klingensmith

> Contract Specialist Kelly Haught





Fossil Energy and Carbon Management





### **Acknowledgment and Disclaimer**

- Acknowledgment: "This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FE0031944."
- Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."



# Questions and answers

the human **s** energy company 8

00

© 2023 Chevron

\_\_\_\_

CO<sub>2</sub>

### **Appendix**

- Acknowledgment: "This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FE0031944."
- Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

