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• Demonstrate the viability of a transformational 

microwave-assisted thermal swing adsorption 

(MTSA) based process to efficiently capture CO2

• CO2 capture efficiency target ≥ 95%

• CO2 product purity target ≥ 95% CO2

• CO2 source is flue gas from a natural gas 

combined cycle power plant (simulated)

• Reduce the capture cost >25% against a reference 

NGCC plant with liquid amines (e.g., Cansolv®)

Project Team and Objectives
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Project Duration

• Start Date = September 23, 2022

• End Date = November 30, 2025

Budget

• Project Cost = $3,125,000

• DOE Share = $2,500,000

• TDA and Partners = $625,000

Dr. Ashok Rao

BP Period Main Activity

1 Year 1 Material synthesis

Adsorption & CFD modeling

Bench-scale system design

Preliminary TEA

2 Year 2 Bench-scale system fabrication

Commissioning/troubleshooting

3 Year 3 Bench-scale evaluations

Techno-economic Assessment 

Life Cycle Analysis

EH&S Analysis
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2-Bed MTSA CCS Cycle

• CO2 stripped from flue gas (>95% capture) by the system at 60°C

• Microwave heating increases the sorbent temperature to 90°C (30°C ΔT)

• Mild vacuum (10 psia or 0.68 bara) is applied to improve the CO2 recovery

• Product stream (95% CO2, dry basis) is conditioned and compressed

• The sorbent bed is repressurized and cooled using raw flue gas

Microwave 

energy
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Why Use Microwave Heating? 
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Direct Bed Cooling Indirect Gas Heating

• Conventional heating is slow with a large mismatch 

between heating and cooling time
• Indirect gas circulation heat is used to prevent diluting CO2

• Sorbents are poor thermal conductors—resulting in slow 

heating and poor temperature uniformity

• Direct cooling with CO2-laden process gas is relatively fast

• Microwave heating is much faster
• Microwave heating is common in several industrial settings

• Microwave heating can be more uniform—the RF frequency, 

penetration depth and reactor geometry are matched

• Sorbent packing can be increased by eliminating heat 

transfer elements from the bed—reducing vessel size/cost

• Cavity/reactor integration can limit the heat delivered to 

vessel, reducing waste heat and improve efficiency
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Conventional Heating Time ≈ 160 Minutes

Microwave Heating Time ≤ 5 Minutes

Potential for Significant Increase in Productivity
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How Does the Microwave Work? 

Electromagnetic Field Model Field (Maxwell)

Heat Transfer Modeling (Fourier)

Electromagnetic Losses  (Poynting)

• Microwave radiation is generated in the magnetron

• Radiation is coupled to a cavity by a waveguide

• Materials interact with the electromagnetic field

• Electromagnetic power losses result in direct 

heating of the material

• Can heat sorbents directly or through susceptors
A B

C

Tuner

Insulation

Vessel

Seal

Waveguide

Magnetron

Design and Modeling of an Enhanced Microwave Reactor for Biodiesel 

Production: Ong & Nomanbhay; dx.doi.org/10.29322/IJSRP.8.12.2018.p8465

D

Access DoorDetailed Modeling & Simulation in BP1

A. Unloaded microwave cavity

B.Loaded microwave cavity

C.Heat distribution in load

D.Microwave/reactor model
—COMSOL modeling for biodiesel
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2-Bed MTSA CCS Cycle

Time 
(min)

6 6 3 6 6 3

Bed 1
Adsorption (CO2 stripped from FG)

Cooling (90 → 60°C)
MW Heating
60 → 90°C

CO2 Recovery
1.05 → 0.68 bara

Pressurize
0.68 → 

1.05 bara

Bed 2
MW Heating
60 → 90°C

CO2 Recovery
1.05 → 0.68 bara

Pressurize
0.68 → 

1.05 bara

Adsorption (CO2 stripped from FG)
Cooling (90 → 60°C)

• 2-bed MTSA cycle time is 30 minutes

• With conventional heating, the same ΔT would require ≥ 180 minutes

• Microwave heating is expected to yield up to a 6X increase in sorbent utilization
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Adsorption Isotherm—Polymer Sorbent

CO2 adsorption isotherms from 60–90°C 

showing working capacity of 6% wt. CO2

CO2 and N2 adsorption isotherms at 

60°C showing selectivity >2,800

CO2 Uptake CO2 Selectivity

 Hads = -27 kJ/mol
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Thermogravimetric Cycling (Single-Cycle)

• TGA tests (left) indicate that rapid CO2 uptake and release 

• CO2 release appears to be more rapid, but in conventional TSA processes, 

release is the rate limiting step

• Adsorbed CO2 is released in less than 7 minutes, when temperature is cycled 

from 60°C to 90°C

• TDA’s sorbent maintained its stability; the apparent loss in capacity over the 

initial 40 cycles is lower than the cycle-to-cycle variation

ΔT ≈ 30°C; ΔM = 4.75%
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Mixed-Matrix Laminates

Small-Scale Production

(Screening Tests & Characterization)

Laminate Concept

Active Phase (Filler)

Continuous Phase (Polymer)
Bench-Scale Sheets

≈ 8’ x 8”

Scale-Up Equipment (MTR)



Bench-Scale Laminate Production (12”x 12”)
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12” x 12” mesh support Half coated support Fully coated support

12” x 12” laminate after drying
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Early Experiments

Single Cycle; ADS ≈ 20 Minutes; Des ≈ 10 Minutes

Control Laptop

I/O and Control 

Hardware

Kitchen 

Microwave

(2.45 GHz)

Microwave Cavity

Dummy Load 

(Water)

Axial Sorbent Bed

Inert Al2O3

Packing

Supported Sorbent

K-Type 

Thermocouple

Gas Inlet
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Microwave-Assisted Regeneration

Single Cycle; ADS ≈ 20 Minutes; Des ≈ 10 Minutes

• Heating and the subsequent CO2

recovery are nearly instantaneous 

upon microwave energization—

allowing for reduced regeneration 

cycle times while minimizing the 

heat transferred to the vessel
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Node Characterization

• Commercial Microwaves operate by 

creating a standing wave inside the 

microwave cavity

• This standing wave creates “hotspots” 

or nodes

• For a standing wave with fixed 

frequency, the spacing between nodes 

is calculated from 𝒅 = 𝝀/𝟐
• For a kitchen microwave with a 

frequency of 2.45 GHz, d ≈ 6.1 cm

• For an industrial microwave operating 

at 915 MHz, d ≈ 16.4 cm

• Experimental verification of a typical 

kitchen microwave matches the 

expected (calculated) node spacing for 

a given plane

• Experimental images (right) show 

areas of color change (heating) within 

the microwave cavity



Sorbent Module Design—Microwave Frequency

Cavity Wavelength Optimization: 915 MHz Selected

2.45 GHz Block Heating 

Model 1kW

915 MHz Block Heating 

Model 1kW

Advantages

• The temperature variation is smaller for 915 MHz heating vs. 2.45 GHz heating

• High-power industrial microwaves are readily available at 915 MHz

• 915 MHz microwave generators can operate more efficiently

• At lower frequencies, the penetrating depth increases

14



Bench Scale System Design 

Sub-Scale Model Validation and Sorbent Material Capacity Demonstration

• 3D-printed contactor for a 16-layer, 

sub-scale sorbent module

• Module assembled using from 3” x 

3” coupons production sheets

• S-parameters are measured with a 

vector network analyzer and 

compared with COMSOL models

• A 915 MHz source and amplifier are 

used to validate heating models

• CO2 adsorption/desorption will be 

tested to validate adsorption models 

and demonstrate sorbent capacity

Custom-made validation cavity with dual 915 

MHz waveguide-to-coax transitions

15
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Structured Sorbent Preparation

Sorbent films are laser cut (A and 

stacked alternating with spacer grids 

in a holder (C and D) to make a 

module or stack (E)

A

B

C

D
E



Sorbent Module Design—Cavity Modeling

Bench-scale microwave cavity and sorbent stack placement have 

been optimized for field uniformity at 915 MHz

Optimized cavity & EM field 

distribution
Optimized cavity with 

discrete Analysis points

Numerical modeling calculates the temperature for a constant array of 

points—allowing for quantitative comparison of heating concepts

17



Sorbent Module Design—Modeling Assumptions

• 915 MHz microwave

• 9-minute heating cycle

• 38-layer sorbent stack

• Laminate thickness = 4mm

• Laminate spacing = 8mm

• Laminate area = 1 ft3

(12” x 12” x 12”)

Sorbent Stack in Cavity at 540sec. 

(average sorbent temp = 60°C)
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Sorbent Module Design—Cavity Design

Microwave 

Waveguides/Magnetrons

CO2 Rich Flue Gas Inlet

CO2 Free Flue Gas Outlet

Several magnetron 

configurations and cavity 

shapes/sizes have been 

evaluated.
19



Sorbent Module Design Optimization

• Cavity is modeled with several 

waveguides/ports

• Electromagnetic field distribution is modeled 

using COMSOL for each combination

• A reinforcement learning algorithm is 

employed to determine the optimal 

combination/sequence for uniform heating

Optimized Standard

Hotter “hot” spots →

← Improved Uniformity

20



Sorbent Module Design—Waveguide Optimization

The field distribution from various waveguide configurations and the 

optimized combination (center)

21



Preliminary Process Design
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Microwave Power TDA 90% TDA 95%

Theoretical MW Power 22,367 25,699 kWe

Sorbent Heating % 100% 22,367 25,699 kWe

Laminate Heating % 0% 0 0 kWe

Microwave Efficiency % 100% 22,367 25,699 kWe

Max Allowed Microwave Power

CO2 Capture System Power TDA 90% TDA 95%

DCC Pump kWe 311 311

Booster Blower kWe 8,488 8,488

Vacuum Pump kWe 8,548 9,012

Pre-Compressor kWe 3,774 3,978

Microwave Power Input kWe 22,367 25,699

Est. CO2 Capture System Power The max allowable microwave power 
for sorbent regeneration (upper limit) 

is 80% of the power Cansolv power 
requirement (energy basis)—i.e., the 
preliminary target is a 20% reduction.

• Threshold MW power ≈ 

0.36 kJ/g CO2 (90% 

capture efficiency)

• Threshold MW power ≈ 

0.39 kJ/g CO2 (95% 

capture efficiency)

Theoretical energy requirement is being estimated from 
the experimental material capacity and the modeled 

energy required for a 1 ft3 sorbent bed.



Current Budget Period Work
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Deadline ID Task Title Verification Method

10/23/2022 M1.1 1.1 Update (PMP) PMP File

10/28/2022 M1.2 1 Kickoff Meeting Presentation

12/12/2022 M1.3 1.2 Complete Initial Technology Maturation TMP File

7/5/2023 M1.4 3.0 Prepare multiple 12”x 12” in size sorbent laminates Pictures

9/22/2023 M1.5 3.1
Demonstrate sorbent capacity ≥ 0.9 mol CO2 per kg at a ΔT=30°C with 12” x 12” 

sorbent laminates
State Point Table

7/5/2023 M1.6 4.1
Complete the detailed design of the sorbent module integrated with heating and 

cooling for rapid cycling

3-D Layout in 

Annual Report #1

7/5/2023 M1.7 5.0
Complete Prelim process design to show TDA’s system can achieve 20% 

reduction in CO2 capture energy compared to Cansolv (95% capture)
Annual Report #1

9/22/2023 M1.8 5.1
Complete Prelim TEA to show TDA’s system can achieve 20% reduction in CO2 capture 

costs compared to Cansolv (95% capture)

7/5/2023 BP2 Continuation Application Annual Report #1

Milestone  uarterly  eport Annual  riefing              inal  eport

Milestone  uarterly  eport Annual  riefing              inal  eport
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Budget Period 2:

• Task 6. Fabrication of the Bench-scale System (2–3 scfm of simulated flue gas)

• Subtask 6.1. Sorbent Reactor Module Fabrication

• Subtask 6.2. Modifications to Bench-Scale System

• Task 7. Accelerated Sorbent Module Life Tests

Budget Period 3:

• Task 8. Shakedown Testing

• Task 9. Full-scale System Design

• Task 10. Bench Scale System Testing and Optimization

• Task 11. Proof-of-Concept Demonstration (min 1,000 hours)

• Task 12. Final Techno-economic Analysis

• Task 13. Life Cycle Analysis

• Task 14. Environmental Health & Safety Assessment

24

Future Work
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