

Retrofittable Advanced Combined Cycle Integration for Flexible Decarbonized Generation

Carbon Management Conference

Aug 28, 2023

Agenda

Project Overview

- Project Schedule
- Site Overview
- EGR Overview
- GT Modifications/Uprates
- ST Integration
- Performance Results
- EGR Detailed Design
- CO₂ Capture Island (ISBL) Detailed Design CCS Plant Integration (OSBL) Detailed Design Plant model screenshots

Art of the Possible – pathway to 99% CO2 reduction

Some comments on the LCA

Project Overview

Problem Statement:

Current State of the Art CCS designs have not explored integration into NGCC plants, missing major technical risks to operation of NGCC plants and major opportunities to improve and enhance the technical and economic viability of CCS in a modern NGCC plant.

Objectives

GEGP will investigate integration concepts leading to a single NGCC/CCS configuration and conclude with a detailed design, TEA, and LCA focused on integration of CCS with the NGCC power plant. Milestones have been identified to track progress on improving CCS economic viability thru the course of the Project.

GEGP will focus on 2 primary Objectives to be completed thru the execution of this CCS FEED Study:

- Identify CCS integration and operation risks and recommend solutions to eliminate or manage Risks
- Identify GT, ST, HRSG, and Plant CCS integration concepts that lead to improved CCS economic viability

Project Site

Existing 2x1 7FA.03 (COD 2001)

- "Arrowhead" Inlets w/ Evap Coolers
- Small Duct Burners
- Natural Gas Only
- Wet Cooling Tower
- GE D650 Steam Turbine
- Existing GT "Arrowhead" Inlets ٠

1304

0037

1010

2311

0200

DE-FE-0032131 CC FEEDS - DOE 2023 Carbon Management Conference

Aug 28, 2023

0112)

(1311)

EGR Overview

Exhaust Gas Recirculation (EGR) recycles a portion of the HRSG exhaust flow back to the GT inlet Primary Values (i.e. why apply EGR)

- Elevated CO₂ concentrations to CCS reduces CCS technology risk and cost
- Reduced O₂ concentrations to CCS reduces solvent degradation significantly
- Reduced Steam for CCS (higher ST output / lower CCS performance penalty)

Primary Challenges

- Added cost and complexity to add to existing GT
- Corrosion risk to GT compressor
- GT combustor lean blowout risk with lower O₂

Maximum EGR limited by GT corrosion risk

(based on GT fuel contaminants) and GT combustor dynamics

EGR assessment shows >\$40MM net savings with EGR applied

EGR flame- visually more diffuse

GT Modifications/Uprates Overview

- DLN 2.6+ combustion system (*Required for EGR*) improved flexibility, lower turndown and increased Modified Wobbe Index (MWI) range
- Advanced Compressor (aka 7F.04-200) adds significantly more airflow and output, especially hot day
- Gen-V Turbine Rotor (aka 3SAR) adds higher compressor discharge operating temp (i.e. higher hot day output)
- Advanced Gas Path Tech 1.0 allows elevated GT firing temps (with DLN 2.6+) for higher output and CO₂ concentrations
- Increased GT shaft capability coupling bolts (with 3SAR) allows higher sustained GT output level
- Robust GT exhaust frame upgraded design to address common wear and tear conditions for improved Reliability
- Turbine compartment insulation and ventilation mod to manage higher GT firing temps

Preliminary NGCC assessment shows >\$30MM net added value with GT mods

Including +\$19MM CCS cost, and +15% increase in CO₂ tonnes/yr

ST Modifications/CCS Steam Supply Overview

Steam Flows increased due to GT mods and uprates

- HP steam flow up 16-18%
- Hot Reheat steam flow up 18-20%
- LP Admission steam flow down 5-7%
- LP ST steam flow up 14-16%
- ✓ With current ST, can modify HP and IP swallowing capacity up to 15% within current casings
- HP more limited by inlet piping and valves will need to bypass 6-10% of steam to CCS
- ✓ LP can have throttling butterfly valve added to crossover to maintain steam extraction pressure to CCS
- Max continuous throttling is ~35%
- Max reduction of LP swallowing capacity within current casing is ${\sim}15\%$

Existing ST can be modified to fit new CCS and GT operating conditions

NGCC Performance

Carbo	n In ^A	Carbon Out ^A			
	kg/hr (lb/hr)		kg/hr (lb/hr)		
Pipeline Gas	229,044 (504,956)	Stack Gas	11,523 (25,404)		
Air (CO ₂)	1,416 (3,122)	CO2 Product	218,938 (482,674)		
Total	230,461 (508,078)	Total	230,461 (508,078)		
A Calculations based	on an 85% capacity factor	r			
Carbon Input to Cycle (total for 2x1 7FA plant):					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
Air Flow to GT's Fuel to GT's EGR Recirculation Flow (40 GT Exhaust Flow HRSG Exhaust Flow to EGR (40%) Flow to CCS System Captured CO2 CCS Absorber Exhaust	4,846,176 lb/l 184,518 lb/hr 3,145,096 lb/l 8,175,790 lb/l 8,175,790 lb/l 3,270,316 lb/l 4,905,474 lb/l 4,336,276 lb/l	$\begin{array}{rl} 4,846,176\ {\rm lb/hr} & 3,122\ {\rm lb/hr}\ {\rm CO}_2 \\ 184,518\ {\rm lb/hr}\ {\rm fuel} & 504,956\ {\rm lb/hr}\ {\rm CO}_2 \\ 3,145,096\ {\rm lb/hr} & 338,718\ {\rm lb/hr}\ {\rm CO}_2 \\ 8,175,790\ {\rm lb/hr} & 846,796\ {\rm lb/hr}\ {\rm CO}_2 \\ 8,175,790\ {\rm lb/hr} & 846,796\ {\rm lb/hr}\ {\rm CO}_2 \\ 3,270,316\ {\rm lb/hr} & 338,718\ {\rm lb/hr}\ {\rm CO}_2 \\ 4,905,474\ {\rm lb/hr} & 508,078\ {\rm lb/hr}\ {\rm CO}_2 \\ 4,336,276\ {\rm lb/hr} & 25,404\ {\rm lb/hr}\ {\rm CO}_2 \end{array}$			
Net CO2 inlet Net CO2 captured Net CO2 exhaust		508,078 lb/hr CO ₂ 482,674 lb/hr CO ₂ 25,404 lb/hr CO ₂			
Anr (ba	uual CO2 Capture sed on 7446 hr/yr operatio	1.6302 MM Me	1.6302 MM Metric tonnes/yr		

NGCC Performance – Peak Loading

Operating Mode	Peaking Capability	CCS Status	EGR Status	GT Status	GT Evap Cooler	HRSG Duct Burner	Notes
Normal	none	ON	ON (required for >70% GT load)	MECL to Baseload (no GT MF)	ON above 50F ambient	OFF	Max use of CO2 Tax Credit
CCS offset peaking	+76MW (+76MW total)	OFF	OFF	Baseload (no GT MF)	ON above 50F ambient		Limited by 45Q tax credit to 25% of op hrs
Airflow Peaking	+24MW (+100 MW total)	OFF	OFF	Peak Airflow (GT rotor MF)	ON above 50F ambient		Moderate NGCC efficiency loss
Standard Peaking	+25MW (+125MW total)	OFF	OFF	Peak Load (GT MF)	ON above 50F ambient		Moderate NGCC efficiency gain
Maximum Peaking	+25MW (+150MW total)	OFF	OFF	Steam Injection (GT MF++)	ON above 50F ambient		Moderate NGCC efficiency gain

EGR – Detailed Design

EGR – Ducting

System Description

- EGR System arranged to minimize impact to existing plant
- Layout also minimizes length of expensive ducts which carry wet flue gas

- Interface points have been reviewed and agreed to with Kiewit and SoCo
- Constructability has been reviewed with Kiewit. Kiewit comments have been incorporated

EGR – Inlet Mixer CFD Study

Typical results pictures from CFD Study

Major conclusions

- Static mixer and inlet system design meets the system CTQs (Aero CTQs) for the operating conditions analysed.
- The major amount of condensation formation will occur in the region "Compressor inlet casing entry to IGV inlet" due to temperature depression resulting from the high flow acceleration in this region.
- The amount of condensation formation observed at compressor inlet with currently analysed EGR cases seem to be higher than that forms for the units with evap cooler (~50% higher).

inlet casing entry to IGV inlet

HRSG Stack & CCP Inlet Dampers

- HRSG Stack CCP Breech Retrofit
 - Retrofit a new breech opening into the existing HRSG stack based on calculations and FEA developed for the Luminous Project
- Stack Damper (16'-10" Dia.)
 - Located at top of stack
 - Seal Air included to provide 100% sealing during Abated Operation.
 - 50-60 sec to fully open or close blades using motor actuator
- Guillotine Damper (22'-2" x 22'-2" square)
 - · Located just after the transition from the stack to the CCP Duct
 - Provided for double isolation of the CCP for maintenance activities inside the CCP Duct during unabated operation
- CCP Inlet Damper (16'-0" wide x 18'-3" tall)
 - Located in CCP Duct just after the EGR Duct takeoff
 - Seal included to provide 100% sealing during Unabated Operation
 - 50-60 sec to fully open or close blades using motor actuator
- Seal Air
 - One system will be shared by HRSG Stack and CCP Inlet Dampers as only one damper will be closed at a time
- CCP Duct Support
 - An expansion joint upstream of the CCP Inlet Damper will isolate the CCP Duct from the HRSG Stack
 - The HRSG Stack will not support the CCP Duct or Dampers

- 2 Trains (1 for each GT)
- Common loading/unloading stations
- Common Cooling Water system

CCS Auxiliary Load Summary		
CO2 Capture/Removal Auxiliaries, kW	18,356	
CCS Flue Gas Fan	7,480	
CCS Pumps	4,849	
EGR Flue Gas Fan	2,610	
CCS Cooling Tower Fans	1,990	
CCS Cooling Water Circulation Pumps	1,427	
CO2 Compression, kW	20,824	

- 2 Trains (1 for each GT)
- Common loading/unloading stations
- Common Cooling Water system

- 2 Trains (1 for each GT)
- Common loading/unloading stations
- Common Cooling Water system

CCS Plant Integration (OSBL) Detailed Design

- 2 Trains (1 for each GT)
- Common loading/unloading stations
- Common Cooling Water system

Overall Plot Plan view

Carbon Capture Island

and the SCIG AIR BLOW SKID TROL SKID

EGR System (from south)

EGR System (from north)

New Steam Extraction piping for Steam Turbine

Art of the Possible – Pathway to 99% CO₂ reduction

What is "net-zero"?

- That depends on the source of the fuel used for the power plant
- Best case scenario "clean" natural gas with little or no carbon footprint to extract it from the ground, filter it, purify it, compress it and transport to the power plant
 - Fresh air into plant is ~0.04% CO₂ from surrounding ambient
 - Depending on GT cycle and firing temperature, ~4% CO₂ exits GT/CC
 - 99% capture of CO₂ results in 0.04% out stack, so approximately "net-zero"
 - With 40% EGR, GT/CC exhaust increases to ~6.7% CO₂
 - 99%* capture of CO₂ results in 0.07% out stack, so not quite "net-zero"
 - Need 99.4%** capture of CO₂ results to get 0.04% out stack (i.e. "net-zero")

*All TEA work on pathway to "net-zero" stopped at 99% capture of CO₂ **LCA study went all of the way to 99.4%

Art of the Possible – Pathway to 99% CO₂ reduction

To answer how to get to 99% CO2 reduction, is done is several steps:

1. What is the maximum proven capability of the current CCS technology/solvent?

Answer: 98% if the CO2 inlet concentration is in 6-7% range (i.e. use EGR)

2. What is the maximum expected capability of the current CCS technology/solvent?

Answer: 99% may very well be capable (but not likely 99.4%)

- 1. What are other technologies that could be added to go from current proven capability (98%) to 99%?
 - a) How about 30% blended H2 we hear about from EPA in the press releases? Answer: This would boost 98% to 98.1-98.2%
 - b) How about adding Direct Air Capture (DAC) to absorber exhaust Answer: This could reach 99%+ but at very high cost
 - c) How about offsets by using renewable natural gas (from agricultural and animal waster recycling) Answer: This could reach 99%+ at increased costs, but limited by amount of available waste

LCA approach

The goal of this LCA is to demonstrate robust accounting of full life cycle emissions and "zero net carbon emissions"¹ of the proposed product system by calculating the life cycle greenhouse gas (GHG) emissions and water consumption (cradle-to-delivered electricity) of producing electricity from the NGCC plant with carbon capture and proposed NETs

Simple system boundary diagram

1. For the purposes of this LCA study, "zero net carbon emissions" is interpreted as net zero upstream and direct emissions from the fuel. Furthermore, "net zero direct emissions" is defined as the direct emissions not captured having an effective CO_2e concentration equivalent to that of ambient air, i.e., a 99.4% reduction in direct emissions relative to the NGCC unit without carbon capture.

LCA best practices

Best practice	This study
Align with internationally accepted standards, i.e., ISO 14040/14044	 Follows requirements of FOA Number DE-FOA-0002515 Aligns with NETL CO2U LCA Guidance and ISO 14040/14044
Transparently document assumptions	 Study documented in ISO/NETL-compliant report, with full assumptions and model documentation in appendices and openLCA model
Conduct a data quality assessment	Qualitative data quality assessment included in report
Test assumptions and uncertainty with sensitivity analyses	 Conducted sensitivity analysis for 9 different parameters, including 2 different capture rates
Include more than one impact category relevant to the product system under study	 Included GWP and water consumption (WC)
Identify areas for improvement and future work	 Where applicable, use higher quality or project-specific data if it becomes available Refine NETs scenario Incorporate real operating data

Increasing capture efficiency to 98% and blending 22% RNG greatly reduces life cycle GWP and slightly increases water consumption

DE-FE-0032131 CC FEEDS - DOE 2023 Carbon Management Conference

LCA – Benchmarking results

Thank You

Questions?