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CCSI2 – Modeling, Optimization and Technical Risk Reduction

Multi-lab modeling initiative to support carbon capture technology development
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Presentation Overview
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• Overview of CCSI2 Modeling Capabilities

• CCSI2-RTI Collaboration

– SDoE work for TCM pilot campaign

– Process modeling 

– Transition to new project for modeling of GEN2NAS

• Summary and Future Work



FOQUS – Framework for Optimization, Quantification of 

Uncertainty, and Surrogates
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Advanced Process 

Simulators and Modeling 

Environments

Nodes: Contain Individual Models Edges: Transfer variables between nodes

Comprehensive Analysis 

of Process Systems
Multifunctional Modules

✓ Ability to interface with:

- Advanced process simulators (Aspen Plus, gProms)

- Microsoft Excel spreadsheets

- Python and MATLAB-based models

- Models containing vector variables

• Uncertainty Quantification 

• Simulation-Based and 

Mathematical Optimization

• Surrogate Modeling

• Sequential Design of 

Experiments

• Optimization Under 

Uncertainty



CCSI2 Capabilities – Uncertainty Quantification (UQ) and 

Stochastic Modeling
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Stochastic modeling framework enables:

• Quantification of risk associated with scale-

up

• Robust design and optimization

• Reduction of epistemic uncertainty through 

data collection (Bayesian inference)



• Design of experiments (DOE) is a powerful tool for accelerating learning by targeting maximally 

useful input combinations to match experiment goals

• Sequential design of experiments (SDoE) allows for incorporation of information from an experiment 

as it is being run, by updating selection criteria based on new information 

• Specific algorithms can be tailored to match experimental goals. Options available in the CCSI Toolset 

include:

– Uniform Space Filling (USF)

– Non-Uniform Space Filling (NUSF)

– Input-Response Space Filling (IRSF)

– Robust Optimality-Based Design of Experiments (ODoE)

• Recommended to run experiments in phases to take advantage of SDoE capabilities and customize 

test designs to meet expected project outcomes

Sequential Design of Experiments (SDoE)
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Detailed discussion on SDoE:

Technical Risk Reduction: Sequential Design of Experiments and Uncertainty Quantification (Abby Nachtsheim – LANL)

Thursday (8/31/2023) @ 9:30 AM during Point Source Carbon Capture Breakout Session



• Collaboration initiated in 2019 with early CCSI2 work focused on computational 
support for modeling RTI’s non-aqueous solvent (NAS) system and evaluating 
model performance against small pilot data

• Development of tools for amine emissions and aerosol formation   

• Contributed sequential design of experiments (SDoE) capabilities to design a 
portion of the test campaign for NAS at TCM in 2022

• SLB forms partnership with RTI to support and accelerate industrialization of RTI 
solvent systems

– CCSI2 met with SLB and RTI (March 2023) to develop strategy for future work 
and demonstrate capabilities of CCSI2 Computational Toolset

• Current work focused on refining process models of NAS and transition into new 
project in support of new project for next-generation solvent system

Highlights of CCSI2 – RTI Collaboration
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TCM Test Campaign for RTI NAS Solvent
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• Leveraged SDoE to guide NAS test 

campaign at TCM → focused on 

demonstrating high levels of CO2 capture 

with low solvent emissions and regeneration 

energy requirement

• CCSI2 team contributed separate designed 

experiments for gas-fired combined heat 

and power (CHP) [3.7 vol% CO2] and 

residual fluidized catalytic cracker (RFCC) 

[13.5 vol% CO2] flue gas sources

• Each designed experiment includes a series 

of test matrices with 12-22 proposed 

operating conditions for flexibility in design 

size

Design factors:

CO2 Capture: 85 – 95%

Absorber L/G Ratio: 2.5 – 6.5 kg/kg

Stripper Pressure: 0.9 – 3.2 barg



SDoE Results – Data Collection at TCM
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Data sets generated for SDoE demonstrate good coverage of operation space:

Coal-based flue gas

NGCC flue gas

•
•



• Evaluate quality of fit to pilot data of current version of process model

– Coal-based flue gas (analysis in progress)

– Natural gas-based flue gas (analysis forthcoming)

• Identify needs for refinement of individual sub-models through re-calibration 

and/or parametric UQ

• Leverage CCSI2 Toolset to determine best practices for solving robustness 

issues associated with these models 

– Ensure modeling framework is sufficiently robust in order to extend to new 

solvent formulations

CCSI2 Process Modeling Support – Current Work Goals
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• Initial efforts to model absorber have revealed computational challenges that 

must be addressed in order to successfully execute future scope

– Incorporation of solvent intercooling and kinetic models have strong effect 

on model robustness

– Plan to explore options for leveraging FOQUS tool to improve model 

performance 

• CO2 capture percentage generally overpredicted (~6% on average)

– Performance of absorber highly sensitive to thermodynamic models in 

comparison to aqueous systems (MEA, CESAR1)

– Uncertainty in model inputs (e.g., CO2 loading, intercooler duty, solvent 

temperature) could potentially have an impact

Preliminary Process Modeling Results - Absorber
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• Modeled stripper section as stand-alone process with CO2 capture level 

constrained based on experimental data

• Stripper inlet temperature fixed to experimental value by adjusting lean/rich 

heat exchanger

• Compared experimental and model predictions of specific reboiler duty 

(SRD):

Preliminary Process Modeling Results - Stripper
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𝑆𝑅𝐷 =
𝑄𝑟𝑒𝑏

ሶ𝑚𝐶𝑂2−𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑

- - - ± 20% 

Identify bias in which the model 

consistently underpredicts heat of 

absorption by 20% - can attribute in 

part to heat of absorption calculation



Preliminary Process Modeling Results - Stripper
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𝑄𝑟𝑒𝑏 = 𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 + 𝑄𝐶𝑂2 𝐷𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 + 𝑄𝐻2𝑜 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛

Potential sources of discrepancy:

• Thermodynamic model (VLE, heat of absorption, heat capacity) 

• Uncertainty in boundary conditions (lean/rich CO2 loading, temperature, pressure)

Heat of absorption calculation:

• For water-lean solvent, term associated with H2O evaporation should be negligible 

• For thermodynamic consistency in e-NRTL model, calculations of differential heat of 

absorption expected to be consistent with Gibbs-Helmholtz equation

Gibbs-Helmholtz Equation:

∆𝐻𝑐𝑜2−𝑎𝑏𝑠≈ −𝑅 ተ

𝜕ln(𝑓𝐶𝑂2)

𝜕
1
𝑇

𝜎,{𝑥0}

Differential Heat of Absorption:

𝑄𝑓𝑙𝑎𝑠ℎ

ሶ𝑛𝑉 = 0

ሶ𝑛𝐿,𝑜𝑢𝑡

Flash @ T,P

ሶ𝑛𝐿
(CO2-loaded solvent)

ሶ𝑛𝑐𝑜2 ≪ ሶ𝑛𝐿

∆𝐻𝑐𝑜2−𝑎𝑏𝑠≈
𝑄𝑓𝑙𝑎𝑠ℎ

ሶ𝑛𝑐𝑜2



Preliminary Process Modeling Results - Stripper
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Fit at 100°C: • Heat of absorption not directly defined in Aspen 

Plus as physical property.  Two options for 

including in thermodynamic model regression:

• Differential heat of absorption – requires user 

subroutine

• Gibbs-Helmholtz equation – use temperature 

perturbation on CO2 partial pressure (method 

used in this work) 

• With internally consistent thermodynamic 

framework, these methods should produce 

comparable results 

• Magnitude of differential heat of absorption 

underpredicted – directionally consistent with bias 

in SRD prediction 

• This discrepancy is not unique to this system –

additional analysis is ongoing for multiple solvent 

systems



• RTI awarded new project (FE032218) to advance their non-aqueous capture 

technology with new solvent formulation  

• Planned CCSI2 contributions (EY23 – EY24):

– Computational modeling to quantify effect of solvent properties (e.g., 

viscosity, thermodynamics) on equipment performance

– Implement UQ work for assessment of risk associated with scale-up of 

process models

– Explore use of SDoE strategies to aid in data collection for model and 

sub-model validation

• For more details on this project:

– GEN2NAS Solvents for CO2 Capture from NGCC Plants (FE0032218) 

(Jak Tanthana – RTI) – Wednesday (8/30/2023) @ 11:30 AM during Point 

Source Carbon Capture Breakout Session

GEN2NAS Project
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• Collaboration with RTI has demonstrated successful application of CCSI2

Toolset for development and refinement of process models of novel CO2

capture processes

– SDoE methods improve quality of data collection → essential for 

quantifying and reducing risk for process scale-up 

• These tools and methodologies can be customized to support different 

technologies and test campaign goals

• Work is ongoing to finalize process models of first-generation NAS system, 

which will be leveraged to support development of models for new solvent 

formulation (GEN2NAS)

Summary and Conclusions
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Heat of Absorption Calculation Inconsistency – Other Models
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Differential Heat of Absorption

40°C

80°C

120°C

Gibbs-Helmholtz Equation

MEA model distributed with Aspen Tech software 

(ENRTL-RK thermodynamic method)
PZ model distributed with Aspen Tech software 

(ENRTL-RK thermodynamic method)

MEA model developed by CCSI team – Akaike 

information criterion (AIC) used to regress parameters 

to fit thermodynamic data - does not include electrolyte 

pair parameters  

(ELECNRTL thermodynamic method)
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