Membrane-Sorbent Hybrid System for Post-Combustion Carbon Capture (DE-FE00031603)

Gökhan Alptekin, PhD
Ambal Jayaraman, PhD
Mike Bonnema
Douwe Bruinsma, PhD
Matt Cates
Mike Cesario
Dave Gribble
Brandon Gushlaw
Jerrod Hohman
Freya Kugler

TDA Research, Inc.

August 28, 2023

Project Objectives and Project Team

Project Duration

- Start Date = August 18, 2018
- End Date = August 14, 2023

<u>Budget</u>

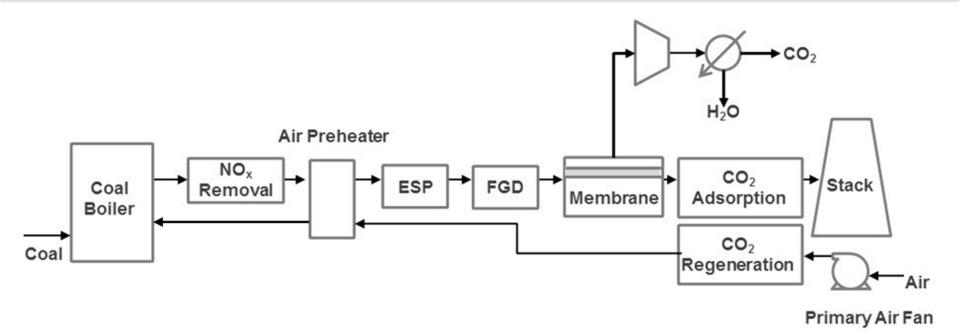
- Project Cost = \$11,498,524
- DOE Share = \$9,198,799
- TDA & its partners = \$2,299,725

- Design and construct a ≈ 1 MW_e scale membranesorbent hybrid system for post-combustion carbon capture
- Hybrid process combines a polymer membrane and a low-temperature physical adsorbent to remove the CO₂ from flue gas
 - Membrane has been developed by MTR
 - Adsorbent has been developed by TDA for postcombustion capture

Main Project Tasks

BY1

- ✓ Design of the Test Unit
- ✓ Initial Design Review
- Preliminary Techno-economic analysis


BY2

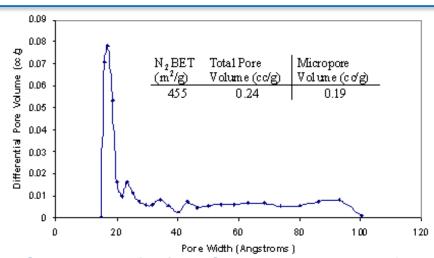
- ✓ Fabrication of the Test Unit
- ✓ Site Preparation, Installation and Shakedown Tests

BY3

- ✓ Field Tests (ongoing; 6–12 months duration)
- High Fidelity Techno-economic Analysis

Hybrid Membrane Sorbent Process

- Membrane operates at ≈50°C under mild vacuum (≈0.2 atm), removes ≈55–60% of CO₂ and almost all water
 - TDA's sorbent removes remaining CO₂ in the membrane effluent (retentate) ensuring 90+% carbon capture
 - The boiler feed air is used as a sweep gas to facilitate sorbent regeneration
 - CO₂ circulation to the boiler air intake increases the CO₂ concentration in the flue gas, providing a higher driving force for the membrane


TDA Sorbent

- TDA developed a mesoporous carbon sorbent modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at low partial pressures
 - Because CO₂ is not bonded, the energy input for regeneration is low
- Heat of CO₂ adsorption is 4–5 kcal/mol

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent", US 6,297,293; 6,737,445; 7,167,354

Sorbent optimization and production scale-up was completed in a separate DOE project (DE-0013105)

Sorbent operation in a VSA system was successfully demonstrated with actual flue gas (DE-0013105)

Technology Maturation

0.5–1 kW Sorbent Only Tests

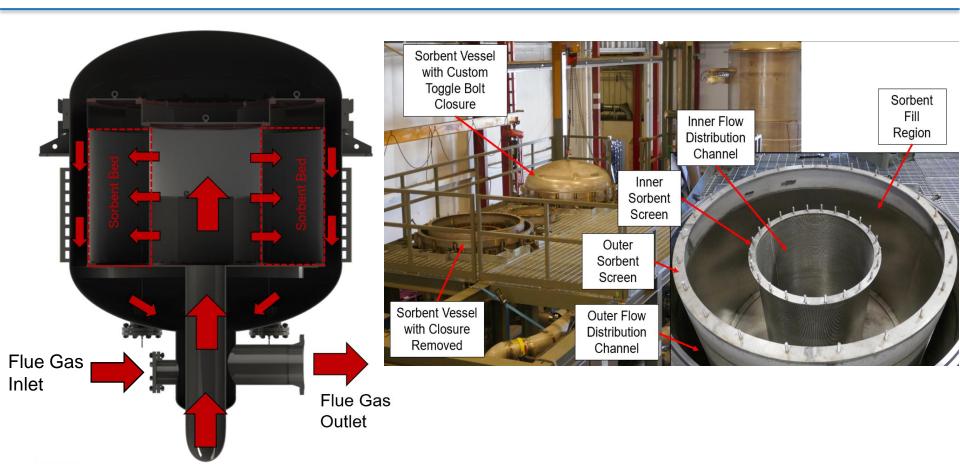
Gas Technology Institute (GTI) Tests with pilot coal combustor

0.5-1 kW Hybrid Tests

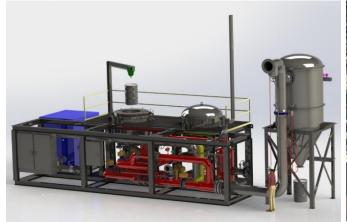
Western Research Institute/ Thermosoly

50 kW Hybrid Tests

Wyoming Integrated Test Center (WITC) Basin Electric's Dry Fork Station Gillette, WY


0.5–1 MW Hybrid Tests

Technology Centre Mongstad (TCM) Norway

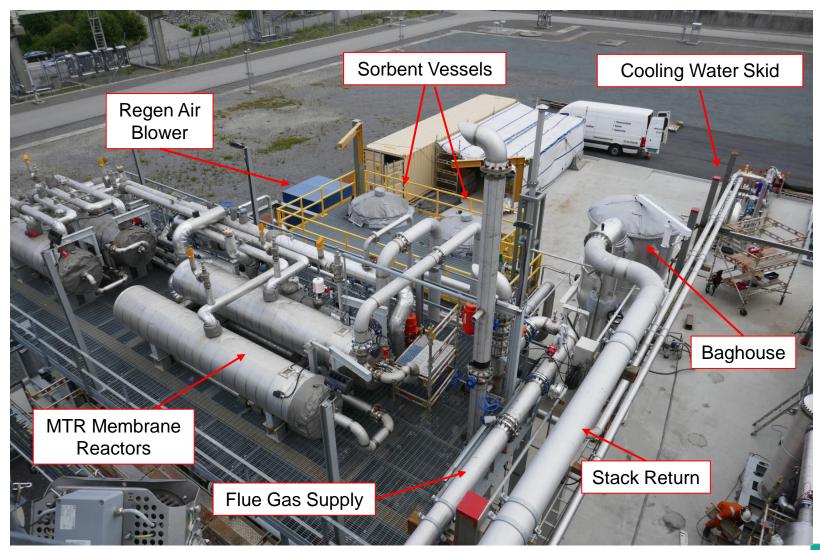

2011	2014	2015	2016	2017	2019–20	2021–22
Bench- Scale tests	0.5–1 kW Sorbent Only tests at TDA	0.5–1 kW Sorbent Only tests at GTI Coal flue gas	Sorbent Scale-up IP secured	0.5–1 kW hybrid tests at WRI with Coal flue gas	50 kW hybrid tests at WTIC with Coal flue gas	0.5–1 MW hybrid tests at TCM with Coal flue gas

TDA Radial Flow Reactor Concept

- Sorbent is loaded in annular section of the vessel
- The flow is in radial direction.
- Higher cross-sectional area and lower bed depth minimize the dP through the bed

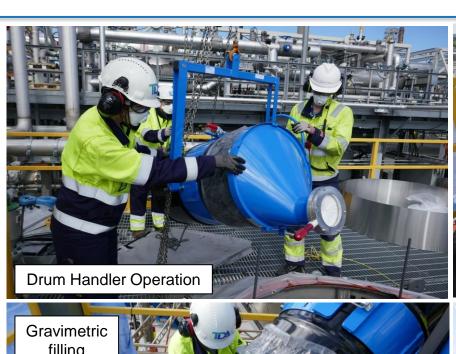
Project Focus

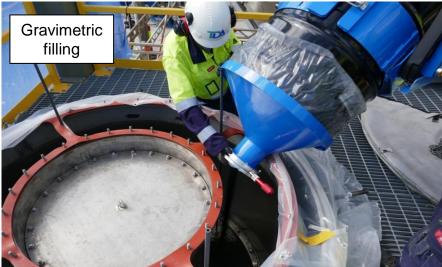
TDA's Sorbent System


Existing MTR Membrane Module

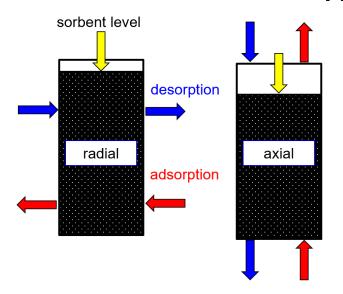
TCM Mongstad, Norway

- Demonstrate sorbent performance
 - √ CO₂ removal efficiency
 - √ CO₂ uptake capacity
- Demonstrate the mechanical stability of the sorbent
- Demonstrate sorbent life
- Demonstrate effective operation of the radial flow reactors
 - Low pressure drop and modular operation
 - Uniform flow distribution
- Development/Validation of Design Models (CFD and Adsorption Models)
- Cycle optimization
- Optimization of the Hybrid System Operation

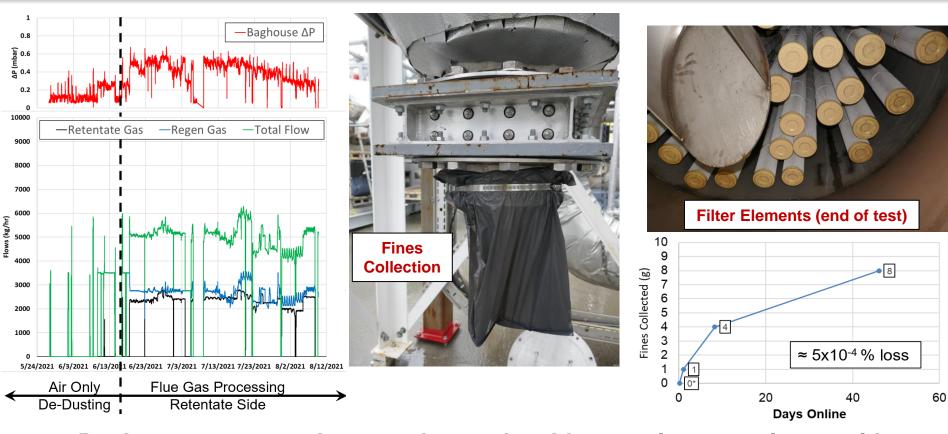

Hybrid Membrane System Overview


Sorbent Vessels

Sorbent Loading into the Vessels



Sorbent Settling and Retainment


- Sorbent settling is not desirable as it generates a void at the top of the bed and cause flow by-pass
- System internals and loading procedures ensured effective pre-settlement
- Top of the sorbent bed is sealed with custom gaskets
- After a short run, the beds were topped off (<2% of total sorbent mass)

- Amount of dust generated was surprisingly low (much lower than we observed in axial beds)
- Sorbent retention was excellent; total fines collected in the baghouse over the first month of operation was ≤ 0.0006% wt. of the initial load

Measurement of Sorbent Dusting

- Baghouse pressure drop was low and stable over time; consistent with a low rate of fines collection
- Total volume of dust collected in baghouse to date is ≈8 g; very low in comparison to the sorbent inventory of ≈1.7 tonne

The collected particulate also included fabrication debris

Field Test Summary

Time online (taking flue gas):

- 4,001 hours[†] (≈ 167 days)
- Availability 80.5%

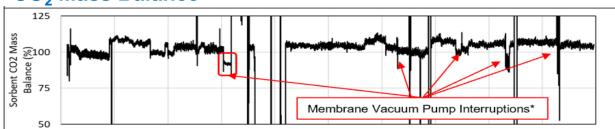
RFCC flue gas CO₂:

- 1,889 tonne received[†]
- 1,645 tonne captured
- 87.1% net capture efficiency (w/ upsets)
- 161,182 sorbent cycles

CO₂ Capture Breakdown

	< 90%	> 90%	> 95%
hours	2,212	1,789	307
days	92	75	13
Percent of run time	55.3%	44.7%	7.7%

CO₂ Capture Efficiency

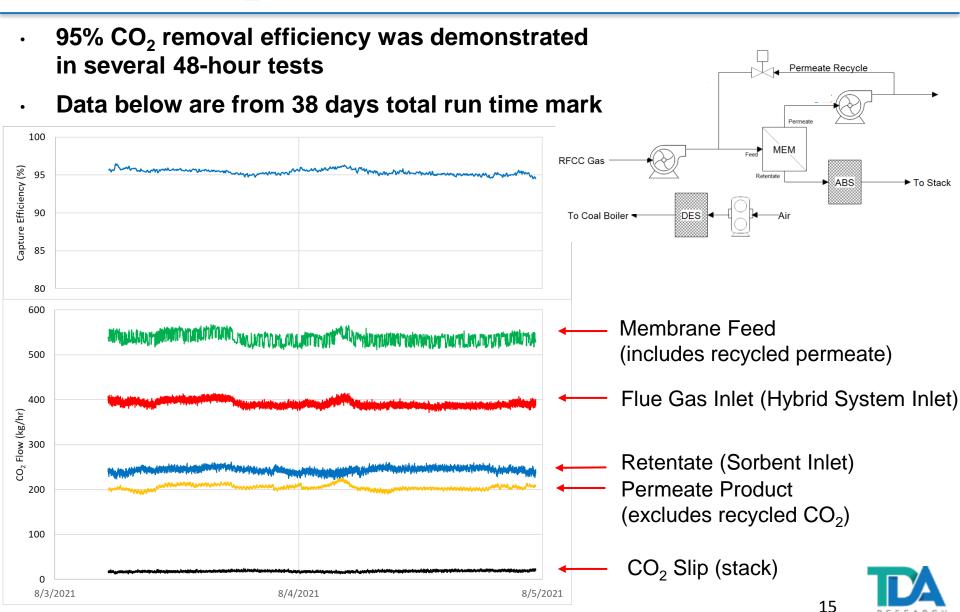


CO₂ Flow Rate – In and Out

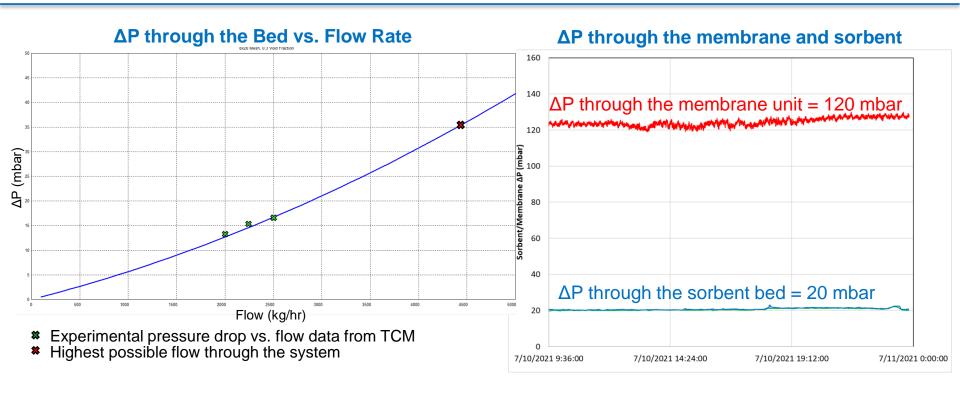
* - Membrane vacuum pump interruptions increase CO2 load to the sorbent sub-system by 50-100%

CO₂ Mass Balance

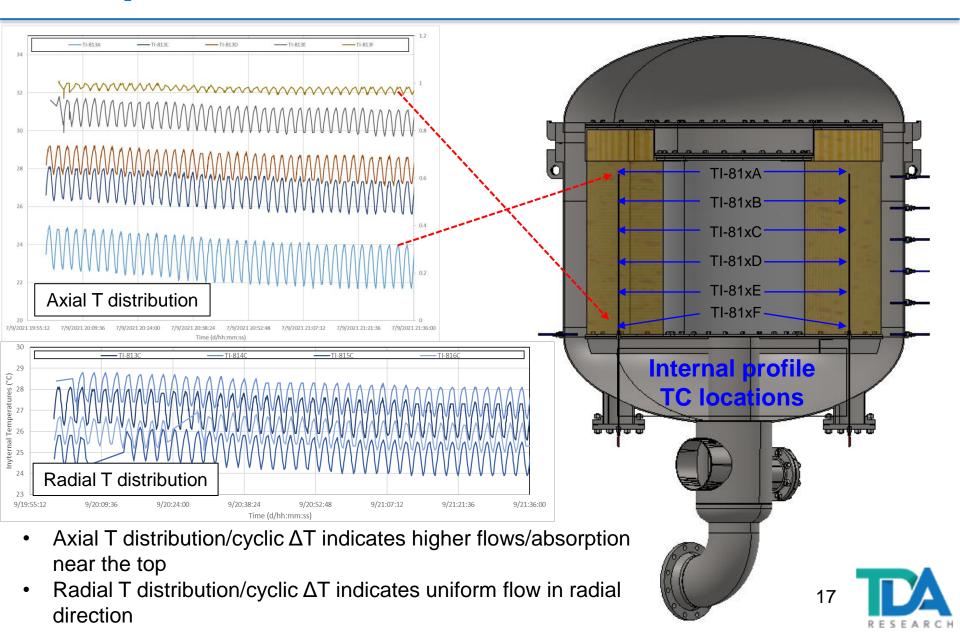
† - includes 70 hours (≈3 days) and 7.2 tonne of CO₂ from CHP flue gas testing at the end of the campaign


Performance Stability

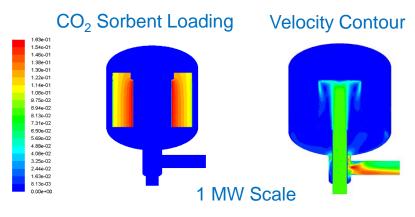
- Performance stability is checked periodically under several baseline conditions
 - Overall CO₂ capture efficiency of the system was measured over a range of regeneration air/retentate flow (A/R) ratios
 - The chart compares two A/R ratios in three different months (summer/fall/winter) during the test program
- No measurable change in system performance was observed through eight months of testing

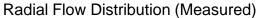


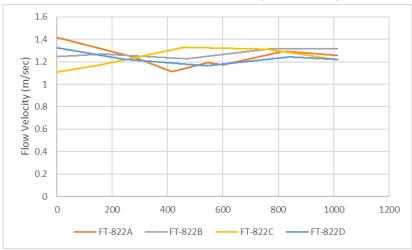
High CO₂ Capture Efficiency (≥95%)

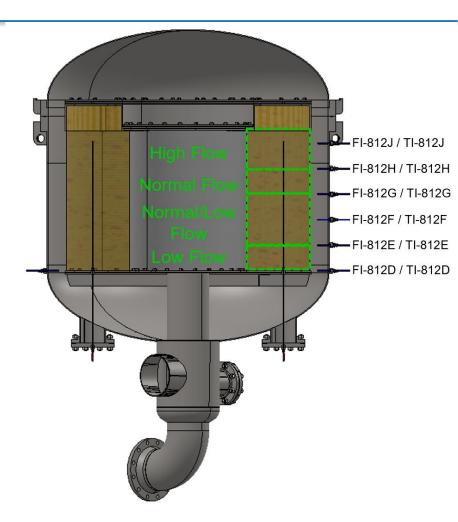


Pressure Drop Measurements

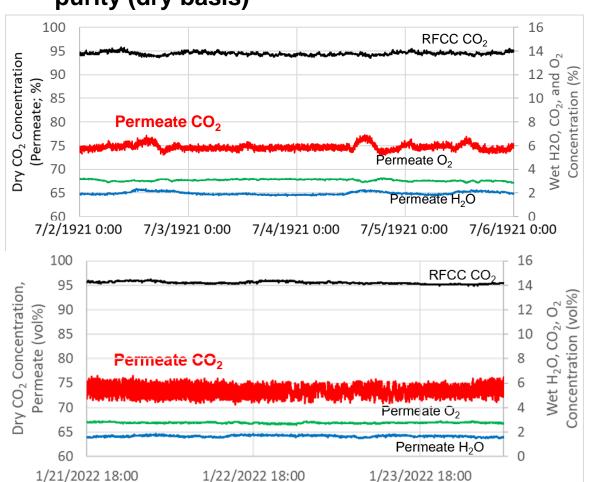



- TDA's radial sorbent bed design achieved a very low pressure drop
- At the 2000–2500 kg/hr flue gas flow, the total ΔP was measured as <20 mbar
- Actual measured ΔPs agree well with the model results
- The membrane unit treating the same flue gas flow and rejecting the same amount CO₂ generated ≈120 mbar pressure drop (Stage 1 membrane)


Temperature Distribution in the Bed



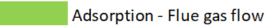
Flow Distribution in the Bed

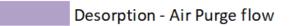


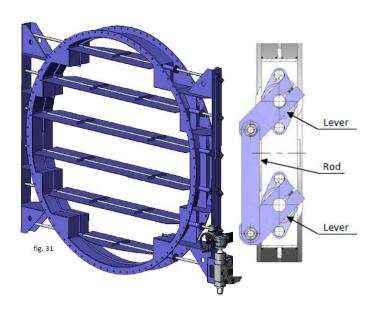
- Radial flow velocity measurements show uniformity within ± 2%
- Axial flow velocity measurements indicate a flow imbalance towards top of the bed

Membrane Performance

- Hybrid system was fitted with MTR's Gen-1 Polaris membranes
- Stable performance with ≈78–80% vol. CO₂ purity (dry basis)

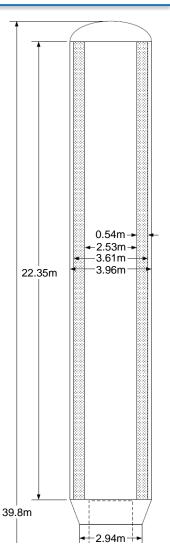

Membrane modules being loaded with new membranes prior to shipment

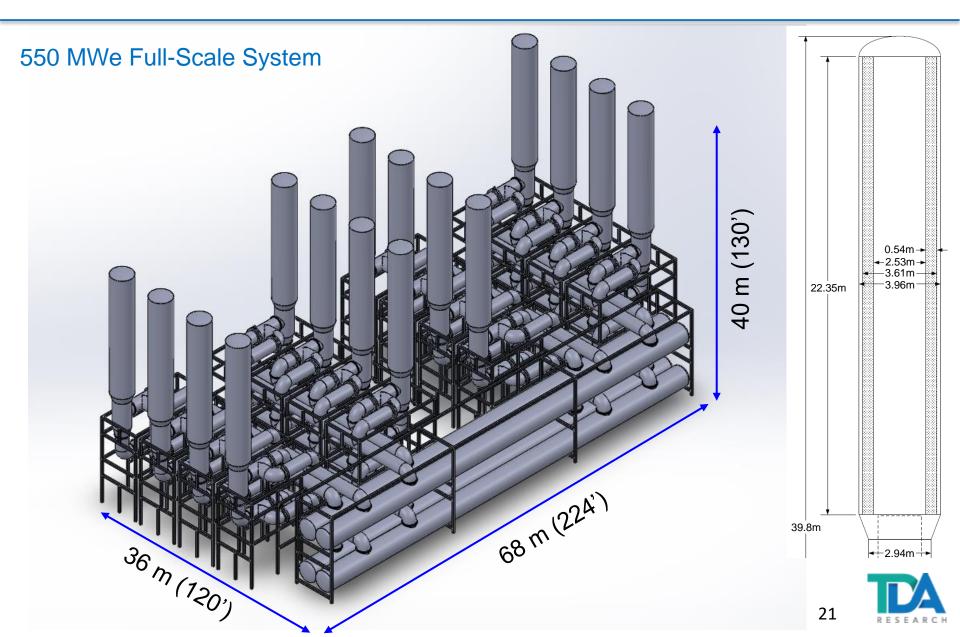



Reactor Vessel Design

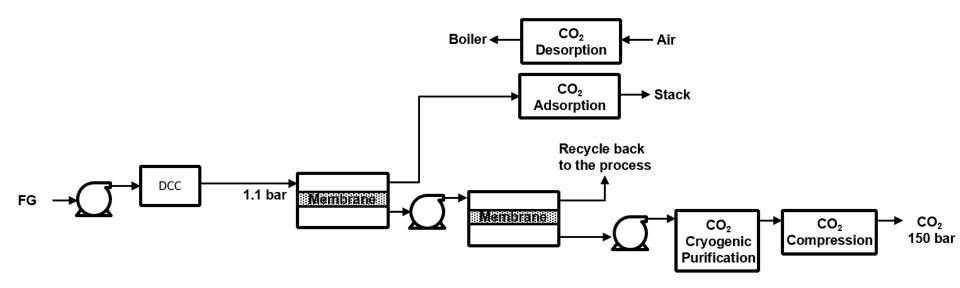
Sorbent System - Hybrid

	Stage I	Stage II
Bed 1		
Bed 2		
60s	30s	30s




 Δ P=50 mbar

Module Size:	68.75 MW
No. of Trains:	8
Beds/Train:	2
Total Beds:	16
Flue Gas Flow:	74.5 m ³ /s
CO ₂ Flow:	1.22 tonne/min
Capacity:	1.8% Wt.
Cycle Time:	1 min
Sorbent Inventory:	67.8 tonne/m ³
Sorbent Density:	0.59 tonne/m ³
Bed Volume:	116.4 m ³
Bed Area:	12.3 m ²
	·


- Sixteen (16) radial beds
- SA516-70 carbon steel;
 0.5" thickness
- 13 ft OD x 73¹/₃ ft T/T

3-D Layout of the Hybrid Sorbent System

Baseline Hybrid Process PFD

- A two-stage membrane process is utilized to recover the CO₂ at the desired purity
- A cryogenic purification system is used to ensure that the O₂ (<10 ppm) and other impurity levels in the CO₂ meets pipeline specifications
- In addition to the baseline study, other cases were also studies including one which does not require re-circulation of the CO₂ into the boiler

Final TEA - Rev. 4 \$2018 Basis

Capture Technology	No Capture	Amine	Membrane-Sorbent Hybrid BP3	Membrane-Sorbent Hybrid Retrofit
Case Studies	B12A	B12B	Baseline Case	No re-circ to boiler
Gross Power, MWe	685	770	905	902
CO ₂ Capture/Removal, MWe	-	30	129	126
CO ₂ Purification, MWe	-	-	23	23
CO ₂ Compression, MWe	-	44	56	55 48
Balance of Plant, MWe	35	46	47	252
Total Auxiliaries, MWe	35	120	255	650
Net Power, MWe	650	650	650	30.6
Net Plant Efficiency, % HHV	40.3	31.5	30.0	90
Carbon Capture, %	0	90	90	281,990
Coal Feed Rate, kg/h	214,112	273,628	287,191	346,060
Carbon Capture System (CCS) CAPEX \$1,000s	-	738,606	351,305	537,729
FG Cleanup + CCS CAPEX inc. Compression	120,427	970,432	506,415	3,450
LCOE, \$/MWh	64.4	105.2	101.2	99.4
LCOE inc. T&S, \$/MWh		114.2	110.6	108.7
Breakeven CO2 Sales Price, \$/tonne		45.7	39.1	38.0
Breakeven CO2 Emissions Penalty, \$/tonne		73.5	68.5	65.4

- TDA's membrane sorbent hybrid system has a net plant efficiency of 30.0% compared to and a cost of capture of \$39.1/tonne CO₂
 - 14.4% lower capture cost than the reference amine system on Rev. 4 Basis
- A stand-alone hybrid without any recirculation to the boiler was also simulated
 - \$38/tonne CO₂ capture cost; <u>16.8%</u> lower than reference amine cost

Acknowledgments

- DOE/NETL Project Manager, Andy O'Palko
- MTR Team, Thomas Hofmann, Jay Kniep, Tim Merkel, Erik Westling
- GTI Team, Chuck Shistla
- UCI, Ashok Rao
- TCM Team, Sundus Akhter, Magnus Aronsson, Kjetil Hantveit, Karstein Mangersnes, Blair McMaster, Stein Olav Nesse, Monica Iren Eidsheim Solend, Roger Solheim, Magne Andreas Tresvik