

Engineering Study of Svante's Solid Sorbent CO₂ Capture Technology at Linde's SMR H₂ Plant DOE Award No. DE-FE0032113

Minish M. Shah and Jason Haley (Linde), Mark Claessen (Svante) September 1, 2023

2023 Carbon Management Research Project Review Meeting Pittsburgh, PA, August 28 – September 1, 2023

"© Copyright 2023 Linde plc and affiliates. All rights reserved."

Svante

Acknowledgement

• This material is based upon work supported by the Department of Energy under Award Number DE-FE0032113.

Disclaimer

• This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Project Overview

• Funding:

	Total	DOE	Linde		Svante/Kiewit	
			Scope	Share	Scope	Share
Budget	~\$1.9 MM	\$1.5 MM	~\$1.0 MM	\$0.2 MM	~\$0.9 MM	~\$0.18 MM

Project duration:

26 months (October 2021 to November 2023)

Project Objectives:

- Engineering design of a Svante solid sorbent post-combustion CO₂ capture technology at the H₂ Plant
- Site-specific engineering study
 - Capture CO₂ from SMR and aux. boiler flue gas and compress to 2200 psia target 90% reduction vs. SMR baseline
 - Estimate CAPEX and OPEX and perform technoeconomic analysis to determine CO₂ capture cost

Meet the Svante Carbon Capture Ecosystem

Svante

Solid Sorbents (MOFs)

Engineered to have high selectivity over water & high capacity for CO₂.

Nanoengineered Carbon Capture Filters

Solid sorbents laid onto thin sheets of film & stacked to create a filter.

Carbon Capture Plant

The overall design, integration and optimization of the entire CO₂ capture plant that goes around the machine and process cycle.

Rotary Adsorption Machine (RAM) with Filters Inside

Solid sorbents laid onto thin sheets of film & stacked to create a filter.

Plan for Rapid Commercial Deployment in 2024/25

01 Manufacturing	02 Rotary Adsorption	03 Capture Plant	04 Demonstrate
Capacity	Machine	Engineering	KPI's
Adsorbent	" Buck " In-house build of 14m	Scoping Expand pipeline of Studies: Class 4&5 projects	In house 3 Single bed test stations
Manufacturing D-BASF	RAM by 1 st Quarter 2023		Dev: 3 Process Demonstration Units
SAB 10 - 1MMt/vr	Design Two 14m 500 TPD RAM Sizes : 24m 2000 TPD	FEED To FID: Projects to FID 2024 SMR, Pulp & Paper, FCC, Cement	External Lafarge 1 TPD Dev Pilots : Total Energies 0.1 TPD
Manufacturing plants per year	Seal Material Testing on Buck and	Gov't Jointly apply to US DOE	External Cenovus 30 TPD
Facility: ~\$100MM	Testing: test stations	Funding : and Canadian Gov't	Large Pilots: Chevron 25 TPD

09/01/2023 Engineering Study of Svante's Solid Sorbent CO2 Capture Technology at Linde's SMR H2 Plant

CALF-20, current status of process development

Svante

CALF-20 MOF

- Current application range between 8-25 % CO₂
- Main process characteristics:
 - Intrinsically lower regeneration energy compared to absorption process
 - No secondary degradation products detected due to stability of the structure minimizing environmental impact (emissions to air, waste, etc)
 - Regeneration taking place at vacuum allowing the use of non-utilized low value heat for regeneration not usable by other technologies
 - Flexible performance for processes allowing tight load following
- Carbon Capture plants using Svante Carbon Capture Ecosystem with CALF-20 currently in FEL2/FEL3
- Process improvements currently being validated:
 - Lower regeneration pressure to reduce energy requirements further
 - Simplification of cycles reducing electricity consumption
- Research into developing new MOF for lower concentrations

Technical Approach & Major Milestones

09/01/2023 Engineering Study of Svante's Solid Sorbent CO2 Capture Technology at Linde's SMR H2 Plant

Project Success Criteria

Decision Point	Date	Success Criteria
End of Project goal	11/30/2023	Cost estimate completed for CO ₂ capture and compression plant from SMR with accuracy of +/- 25%

Host Site Selection

- One of the largest SMR H₂ plants in Linde's Gulf Coast fleet
 - Sufficient space available adjacent to existing SMR
 - Sufficient capacity for additional utilities
- 400+ miles of pipeline network connects multiple plants
 - Includes H₂ storage cavern
- Proximity to CO₂ sequestration sites
 - Saline aquifers
 - Depleted oil and gas fields
 - Large storage capacities for >20 years operation

Design Basis – Base CCS Case

Feeds at 100%	SMR	Aux. Boiler
Temperature, F	~300	~317
Pressure, psia	14.7	14.7
N ₂ + Ar + O ₂	~66%	~75%
C0 ₂	~16%	~8%
H ₂ 0	~18%	~17%
Trace impurities	< 100 ppm	<100 ppm

CO ₂ Product Specifications	
CO ₂ purity	>95%
Temperature, F	<120 F
Pressure, psia	2200
Water	< 630 ppm
Oxygen	<10 ppm
Nitrogen	<4%

Plant concept

- Single train design; two RAMs
- 100% PCC Unit Steam Supplied by new Aux Boiler
- CO₂ captured from SMR and Aux Boiler flue gas to achieve 90% reduction vs. baseline
- Equipment is sized for 110% of normal capacity
- CO₂ capture capacity is ~1.435 million tonnes/year at 100% of normal operation

CCS Cases

- Base CCS Case Main focus of the engineering study
 - CO₂ separation by Svante RAM to produce ~95% purity CO₂; ~92.3 % recovery
 - Linde CO₂ purification process to meet <10 ppm O₂ spec; ~99.7% recovery

Two step-off cases evaluated – Detailed HMB and utilities estimates; Budgetary cost estimates

- Catox Case
 - CO_2 purification by catalytic oxidation with H_2 to remove residual O_2
 - 100% CO₂ recovery in purification section
- Energy Optimization Case
 - Heat of CO₂ compression and heat from CO₂ separation section (RAM) used to generate part of steam
 - Reduces NG consumption by ~20% and overall CO $_2$ volume by ~5%

System Boundary

BFD Base Case

09/01/2023 Engineering Study of Svante's Solid Sorbent CO2 Capture Technology at Linde's SMR H2 Plant

3D Model Base Case

09/01/2023 Engineering Study of Svante's Solid Sorbent CO2 Capture Technology at Linde's SMR H2 Plant

Performance Summary

- Significant reduction in power (~10%) and NG requirements (~24%) in the energy optimization case
- Carbon intensity (CI) reduced from ~13.7 kg CO2/kg H₂ in no CCS case to ~6 in the energy opt. CCS case
 - Scope 1 CI reduction of ~9.8 offset partly by increase in Scope 2 and Scope 3 CI values

CAPEX Estimate

- Equipment costs generally in line with the expectations
- Construction accounted for large portion of total
- Capex for the Catox cases showed significant improvement due to simpler CO₂ purification process
- Energy Optimization case resulted in further improvement due to simpler layout for large ducts and ~5% lower CO₂ volume

Technoeconomic Analysis Results

CCS – CO₂ capture and storage

- NETL methodology adapted for levelized cost of CO₂ capture
- CCS cost for the base case is projected to be \$146/T CO₂
- It decreases to ~\$124/T CO₂ for the energy optimization case
- Further improvements needed for financial viability based on 45Q tax credits

Key TEA Assumptions	
Project life, yrs	15
Equity	100%
Real \$ cost of equity	7.84% ¹
Capacity factor, %	90%
Fixed costs, % of TOC/yr	3.3%
TASC ² /TOC ratio	1.14 ¹
Capex recovery factor, % of TASC/yr	13.2% ¹
LFP ³ for NG, \$/MMBtu HHV	\$4.17
Power, \$/MWh	\$71.7
Water, \$/1000 gal	\$1.90

1 Financial parameters from 'QGESS Cost Estimation Methodology ..' NETL-PUB-22580 2 TASC – Total as-spent cost 3 Levelized fuel price

Summary

- Completed site-specific engineering study for retrofitting Linde's SMR H₂ plant with Svante's PCC technology
- System designed to reduce ~90% Scope 1 CO₂ emissions
- Capture capacity of ~1.435 MM tonnes/yr
- With energy optimization and simpler CO₂ purification, CCS cost is projected to be \$124/T CO₂
- Further technology improvements needed for financial viability based on 45Q tax credits
- Process improvements currently being validated by Svante will increase likelihood of attaining financial viability

Backup

Organization Chart

Gantt Chart

Thank you for your attention.

Linde Inc. www.linde.com

