Application of a Transformational UKy 3 Ton/Day CO₂ Capture System at a Steel Process Plant DE-FE0032133

Heather Nikolic and Kunlei Liu

IDEA at PPL R&D Center University of Kentucky Lexington, KY

http://uknow.uky.edu/research/unique-public-private-research-consortiumestablished-caer-co2-capture-pioneers

2023 Carbon Management Research Project Review Meeting August 28-September 1, 2023

Project Objective

Demonstrate the UK CO_2 capture process at Nucor Steel Gallatin treating electric arc furnace evolved gas with a CO_2 concentration of ~1.5 vol%

Performance Dates: 4/25/2022-1/31/2026

BP1

4/25/22-1/31/24

- Design
- Contractor selection

BP2 2/1/24-1/31/25

- Site Prep
- Module Erection
- Tie-in at Nucor

BP3

- 2/1/25-1/31/26
- Evaluation
- Data Analysis
- Reporting

	DOE-NETL	Cost Share	Total
Total	\$4,999,965	\$1,250,523	\$6,250,488
Percent Share	80%	20%	100%

Energy Advancement at PPL

institute for Decarbonization

and

R&D Center

Technology Background

- Absorber with T and Absorption Profile Control
- 2. Split Rich Stripper Feed
- ForwardfeedAdvancedProcessControl

F. College of Engineering **Technology Background**

Energy Advancement at PPL Institute for Decarbonization

and R&D

Center

	UK Field Pilot CO ₂ Cap	ture Unit	UK Bench CO
 ~1300 hours run with MEA Process can easily capture 90% of CO₂ Solvent 	MEA Parametric	 Process performance is dependent on ambient conditions Channel flow observed in absorber Thermal compression benefits realized when lean/rich exchanger approach temperature < 20 °F 	H3-1 Solvent
regeneration energy of 1200– 1750 BTU/lb CO ₂ - captured, ~13% lower than Reference Case 1	MEA	 Recirculating cooling water is 3-9 °F cooler compared to a conventional cooling tower at the same ambient conditions Degradation was comparable to other published MEA pilot studies under similar conditions 	Campaign circu capa high surfa to 30
(RC 10) • ~1500 hours run with H3-1 • Solvent regeneration	Campaign	 Impact of the secondary air stripper on solvent oxidative degradation was negligible Nitrosamines were not found in emissions above the limits of detection during the MEA campaign 	CCSL Solvent Campaign
energy of 900– 1600 BTU/Ib CO ₂ - captured, ~36% lower than RC10 • Secondary air stripper performs as expected with partial CO ₂	Campaign H3-1 Long-term Campaign	 90% CO₂ capture and low solvent regeneration energies are possible with a range of solvent concentrations Selenium concentration exceeded RCRA limit Thermal reclaiming is effective to remove RCRA elements from the solvent H3-1 is ~15-20% less corrosivity than MEA H3-1 solvent loss is ~20% less than MEA Most of the solvent loss due to 	Process Modifications Process
recycling (>20% o recycling (>20% o CO ₂ captured) demonstrated to enhance gaseous CO ₂ pressure at the absorber inlet.	UK Solvent Parametric	entrainment from columns • Nitrosamines were detected in emissions during the H3-1 campaign Secondary air stripper does not contribute to solvent oxidative degradation	loadin; in rege • Solid systen 50% • ~100
• ~850 hours run with CAER solven • Solvent regeneration	Long-term	The MBT additive/inhibitor is effective reducing corrosivity and degradation Nitrosamine and aldehyde emissions were insignificant and comparable to the MEA campaign Therman reducing is offective to maintain Therman reducing is offective to main reduc	proces • Heat • Acou • Hydr • De-w
energy consistent with findings at bench scale	Other	Themal reclaiming is effective to maintain levels of RCRA elements in the solvent below the hazardous waste limits Absorber is overdesigned and maximum solvent absorption is attained	
	Solvent Jwith similar CO	olvent regeneration energy differences D₂ caputure is not observed er bottom T favors higher rich loading	Lab CCS
UK Solvent	\$6.50/kg chemical cost Hindered primary amine blend, no >7500 experimental hours at ben NG- and coal-fired flue gas evalu 3-20 vol% CO2 inlet concentratio Aspen Plus model validated by ei Solvent regeneration energy as lo Make up rate of 0.6 kg/tonne CO2	o stable nitrosamine formation ich and engineering scales ations n evaluations ngineering scale data ow as 1040 BTU/lb CO2 2	 50-90% nitrosamine removal demonstrate with carbon sorbent

Bench CO₂ Capture Units

• H3-1 Solvent Performance: ~27% reduction in solvent reduction in solvent regeneration energy, 35-45% reduction in circulation rate, 1.5X cyclic capacity, low degradation, higher viscosity and lower surface tension compared to 30 wt% MEA

• CCSL Solvent Performance: ~30% reduction in solvent regeneration energy, 40% reduction in circulation rate, 2X cyclic capacity, low degradation, higher viscosity and lower surface tension compared to 30 wt% MEA

 Absorber T control via discretized packing In-situ liquid distribution

Open tower compact absorber with spray (50 µm droplets) leads to enhances mass transfer by 4X
 Staged absorber and stripper feeds
 CO₂ preconcentrating membrane results in increased rich carbon loading by 17% and a 25% reduction in reconstration percent

In regeneration energy
Solids circulation solvent recovery

system reduces amine emissions by 50%

• ~100% CO₂ capture with dual-loop Heat transfer packing
Acoustic packing
Hydrophilic/phobic packing
De-watering membrane

b CCS 90% nitrosamine val demonstrated

Nitrosamine Removal

Technology Background

Technical Advantages

- Simple, solvent-agnostic process
- UK hindered primary amine solvent \rightarrow no stable nitrosamine formation
- Split rich stripper feed \rightarrow reduced solvent regeneration energy requirement
- Advanced, feed-forward process controls \rightarrow real-time solvent quality knowledge and automatic set points for energy minimization

Technical Challenge

Low CO₂ concentration (~1.5 vol%) → low L/G → possible maldistribution on packing

Project Challenge

• Repurpose existing equipment

Site Selection

Energy Advancement at PPL R&D Center Institute for Decarbonization and

Repurpose Existing Modules

Energy Advancement at PPL Institute for Decarbonization and **R&D** Center

Line by Line P&ID Review

College of Engineering Energy Advancement at PPL Institute for Decarbonization R&D and Center

	Expe	rimer	tal Plan		
		Length of Test Period	Effectiveness Evaluated By	Variables and Important Process Parameters	Instrument/Analytical Method Employed
	Parametric Testing for	5 Months, 8 Hours per	Capture Efficiency Energy Consumption Gaseous Pressure Drop Overall Absorber CO ₂ Transfer Flux	Lean Solvent Flowrate and Return Flue Gas Flowrate and Temperature Lean Solvent Physical Property Inter-stage Cooling Duty	Pressure Transducer, Thermocouple, RTD, Mass Flowmeter, Density, pH, Conductivity, Pitot Tube for Gas Flow Power Meter
Optimum Operating Conditions	Condition with 2- 3 Hours for Stabilization	Rich Carbon Loading at Absorber Outlet Temperature Difference between Stripper Top Gas and Bottom Lean	Stripper Pressure and Reboiler Temperature of Primary Loop Absorber Temperature Profile of the Primary Loop	Gas Analyzer for CO ₂ /H ₂ /O ₂ Titrator for Alkalinity and Carbon Loading, GC-MS and HPLC for Amin	
with/out Feed- forward Process Control 3 Long-term Campaign H a	1 Month in total, 4 Hours per	Capture Efficiency Temperature Difference between Stripper Top Gas and Bottom Lean Exiting Streams	Lean Fowrate Stripper Pressure and Heat Flux to Reboiler of the Primary Loop	Gas Analyzer for CO ₂ /H ₂ /O ₂ Pressure Transducer, Thermocouple, Flowmeter, Density, pH, Conductivity, Power Meter, Gas Flowmeters	
	Condition	Reboiler Specific Duty Ramp Rate	Flue Gas Flowrate CO ₂ Concentration at Absorber Inlet	Valve Response, Steam Flow Respons and in-line Carbon Loading	
	U	3 Months with a Two-Shift 10 Operational Hours per Day,	Capture Efficiency Temperature Difference between Stripper Top Gas and Bottom Lean Exiting Streams	Lean Flowrate Stripper Pressure and Heat Flux to Reboiler of the Primary Loop	Gas Analyzer for CO ₂ /H ₂ /O ₂ Pressure Transducer, Thermocouple, Flowmeter, Density, pH, Conductivity Power Meter, Gas Flowmeters
	Campaign	and One Month Continueous Run	Reboiler Specific Duty Ramp Rate and Operability to Achieve 95+% Capture Including Ambient Condition and External Load Changing	Flue Gas Flowrate CO ₂ Concentration at Absorber Inlet	Valve Response, Steam Flow Respons and in-line Carbon Loading

Pign College	Techni	cal Approach	
of E	Technology	Performance Matrix	Impact on CCS Cost (CAPx and OPEx)
an In: ^{ngineering} Er	Advanced Process Control Strategy	-Response time <5 minutes -Average performance >90% of steady state operation	 -No impact on CAPx -Reduction of steam extraction during cycliclic operation -Reduction of solvent degradation from overshooting stripper P and reboiler T
Institute for Decarboni Energy Advancement <i>ɛ</i>	Discretized Absorber Packing with Matched Solvent Physical Properties	-Bulge temperature <150 °F at L/G =3.5 -Average mass transfer coefficient >1.5x of traditional configuration -Reduction of column differential pressure by up to 5% compared to traditional arrangement -Solvent carbon cyclic capacity >1 mol/kg solvent -Elimination of liquid maldistribution	-Reduction of CAPx due to short packing requirement -Reduction of steam extraction due to improved solvent cyclic capacity and lower sensible heat requirement -Reduction of auxiliary power consumption resulting
nization and t at PPL R&	Split Rich Primary Stripper Feed	-Primary stripper top-to-bottom dT > 35 °F -Reduction of reboiler specific duty by >15% compared to traditional stripper configuration	-Increase of CAPx due to split of one L/RHXER into two for easy system control and additional associated piping, but should be negligible due to same heat load maintained -Reduction of steam extraction by 15%

	Pr	oject Milestones		
lgman lege of Engineering	BP	Description	Planned Completion	Actual Completion
ering	1	Droiget Vielsoff Masting Held	Date	Date
Q	1	Project Kickoff Meeting Held	8/24/2022	5/31/2022
Ins En	1	TMP Complete	8/24/2022	9/16/2022
Institute for Decarbor Energy Advancement	1	Host Site Agreement (HSA) Complete	5/31/2023	5/24/2023
ute gy _'	1	PDP Complete	9/30/2023	0 /22 /2022
e fo Ad	1	Boiler Procurement Decision Point Meeting	8/31/2023	8/23/2023
or I Vai	1	General Contractor Selected	1/31/2024	
)ec nce	2	Nucor Site Prepared for Installation	4/3/2024	
ar	2	CCS Installed at Nucor	8/1/2024	
boı ent	2	Test Plan Complete	8/1/2024	
niz: at	2	Commissioning Complete	1/31/2025	
Institute for Decarbonization and Energy Advancement at PPL R&D	3	Parametric/Dynamic Campaign Complete (Demonstrate 95% CO_2 capture efficiency and CO_2 product stream purity of \geq 95%; quantify absorber performance and reboiler duty)	6/30/2025	
Center	3	Long-term Campaign Complete (1000 hours showing optimized process conditions, dynamic stability and operability)	9/30/2025	
	3	TEA Complete	10/31/2025	
	3	EH&S Complete	10/31/2025	

Project Success Criteria

Completion of BP1

- 1) Contract in place with engineering design firm for CCS reconfiguration and relocation
- 2) Boiler specified and procured
- 3) Contract in place with general contractor for relocation of CCS

Completion of BP2

- 1) Commissioned CCS at Nucor Steel Gallatin Site
- 2) Acceptance of test plan

Completion of BP3

- 1) At least 2 months of engineering-scale testing campaign of three transformational CO₂ capture technologies at the Nucor Steel Gallatin Site
- 2) Demonstrated \geq 95% CO₂ capture efficiency
- 3) Demonstrated CO_2 product stream purity of $\geq 95\%$
- 4) Techno-economic analysis showing Cost of Capture and Cost of CO₂ Avoided, calculated for gross CO₂ captured and net CO₂ captured
- 5) Attainment of TRL 6 of the three proposed transformational CO_2 capture technologies

Project Risks and Mitigation Strategies

Perceived Technical Risk	Mitigation Response Strategy		
	- Redesign the liquid collector and distributor		
Severe liquid misdistribution due to L/G	- Reconfigure the absorber with local pump-		
	around		
Narrow operating hydraulic window due to	- Modify the interstage cooler duty		
discretized packing arrangement	- Reconsider the absorber temperature profile		
discretized packing arrangement	while the capture efficiency target is considered		
Unstable operation of high-temperature L/R	- Increase the flow throughput		
solvent heat exchanger (plate-n-frame) due to	- Reconfigure with large gasket or replaced with		
vapor generation	Tube-n-Shell exchanger		
Time required by the control scheme calculation	- Simplified calculation logic will be developed		
block takes too long due to the complication of	and implemented while the reasonable accuracy is		
model with 100+ variable inputs for a fast process	maintained		
response time to be realized	mannanied		
Degraded matchability between packing surface	- Solvent quality control methods will be		
and solvent physical properties due to the	developed		
accumulation of solvent impurities from flue gas	- In-situ packing cleaning will be evaluated		
and degradation over time	In situ packing cleaning will be evaluated		

Current Status

- 1. Host Site Agreement Executed
- 2. PO issued to KMPS for CCS Island Design and kickoff meeting held
- Burns & McDonnell selected as BOP Design Firm/PDP Preparation and Contract Under Negotiation

Lesson Learned

- 1. A mutually beneficial partnership between the CCS operations team and the host site is critical.
- 2. Costs of the advanced solvent need to be balanced with the savings from energy consumption.
- 3. Utilization of Engineering Procurement and Construction (EPC) services are important, and they must satisfy the requirements of the host site and the technology developer in a triangular relationship.
- 4. Advancing through the TRLs in steps is necessary and results must be fundamentally understood at each scale.

Future Development & Commercialization

ligman Ilege of Engineering versity of Kentucky. Energy Advancement at PPL R&D Center

Institute for Decarbonization

and

Expected Output

- Experience and knowledge on low concentration CO₂
 capture performance, solvent management and
 dynamic operability
- Control strategy automatically maintains the target CO_2 capture efficiency while continuously minimizing the solvent regeneration energy.
- Full-scale deployment if the post-combustion CO₂ capture is feasible and cost effective

Acknowledgements

U.S.DOE NETL: Krista Hill, Greg O'Neil, José Figueroa, Dan Hancu and Lynn Brickett Nucor Steel Gallatin: Anna Mauser, Hunter Summers, Rob Rosenbaum and Paul Shovlin EPRI: Abhoyjit Bhown Emerson/Cornerstone: Vigen Biglari ALL4: Karen Thompson

Targets for Cost Reduction

Energy Advancement at PPL R&D Center	Institute for Decarbonization and

Engineering

	B31A	B31B	UK Process
Capture Efficiency, %	N/A	90	95.0
Total Plant Cost, \$/1000	566971	1281324	972500
Net Power Output at Design Condiiton, MMe	727	646	647
COE (\$/MWh)	43.3	70.8	61.5
Fuel Costs	28.1	31.6	31.5
Variable Costs	1.7	5.6	4.4
Fixed Costs	3.6	8.6	6.6
Capital Costs	9.9	25.0	18.9
CO ₂ Captured, lb/MWh		764	804
Cost of CO ₂ Captured (\$/tonne CO ₂)		79.6	49.9
Reduction of CO ₂ Capture from RC B31B			37%

Appendix: Organizational Chart

Energy Advancement at PPL R&D Center nstitute for Decarbonization and

nan f Engineering entucky.

Appendix: Gantt Chart

Task Name	Start	Finish	02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04
1. Project Management and Planning	4/25/22	1/31/26	
1.1. PMP	4/25/22	5/24/22	
1.2. TMP	4/25/22	8/24/22	
Budget Period 1	4/25/22	1/31/24	
2. HSA	4/25/22	5/31/23	
3. Relocation of Engineering Scale CCS	4/25/22	1/31/24	
3.1. Reconfiguration	4/25/22	1/31/24	
3.1.1. Absorber Internals	4/25/22	8/31/23	
3.1.2. Split Rich Stripper Feed	4/25/22	8/31/23	
3.1.3. Advanced Control Strategy	4/25/22	8/31/23	
3.1.4. Process Simplification	4/25/22	8/31/23	
3.2. Boiler	4/25/22	8/31/23	
3.3. Site Survey and Preparation	4/25/22	1/31/24	
3.4. Deconstruction and Removal Planning	4/25/22	10/31/23	
3.5. Shipping Preparation	4/25/22	10/31/23	
3.6. General Contractor Selection	10/25/22	1/31/24	
3.7. HAZOP Evaluation	8/1/22	8/31/23	
Budget Period 2	2/1/24	1/31/25	
4. Construction	2/1/24	10/31/24	
4.1. Foundation	2/1/24	4/3/24	
4.2. Decommissioning and Shipping	1/15/24	3/15/24	
4.3. Installation	6/4/24	8/1/24	
4.4. Tie-ins	8/2/24	11/1/24	
5. Test Plan	2/1/24	8/1/24	
6. Start-up and Commissioning	2/1/24	1/31/25	
6.1. Commissioning Plan	2/1/24	8/1/24	
6.2 Start-up and Commissioning	11/4/24	1/31/25	
Budget Period 3	2/1/25	1/31/26	
7. Parametric/Dynamic Campaign	2/1/25	6/30/25	
7.1. Absorber Packing Performance	2/1/25	5/31/25	
7.2. Reboiler Specific Duty	6/1/25	6/30/25	
8. Long-term Campaign	7/1/25	9/30/25	
8.1. System Dynamic Stability and Operability	7/1/25	7/31/25	
8.2. Reboiler Specific Duty Minimization	8/1/25	8/31/25	
8.3. Packing Operability under Cyclic Operating Environment	9/1/25	9/30/25	
9. TEA	2/1/25	1/31/26	
9.1. Modeling	2/1/25	7/31/25	
9.2. Equipment Sizing	8/1/25	9/30/25	
9.3. Analysis	10/1/25	12/31/25	-
10. EH&S Risk Assessment	2/1/25	1/31/26	