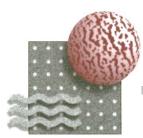
Critical Component/Technology Gap in 21st Century Power Plant Gasification Based Poly-generation: Advanced Ceramic Membranes/Modules for Ultra Efficient

H₂ Production/CO₂ Capture for Coal-Based Poly-generation Plants

DE-FE0031930

Carbon Management Project Review Meeting

9-1-2023


- Dr. Richard J. Ciora, Jr., Media and Process Technology Inc., Pittsburgh, PA
- Professor Theo Tsotsis, University of Southern California, Los Angeles, CA

Media and Process Technology Inc.

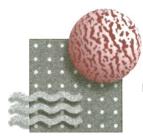
MPT TECHNOLOGY BACKGROUND

Project Overview

<u>Program:</u> DOE/FE "Critical Components for the 21st Century Power Plant"

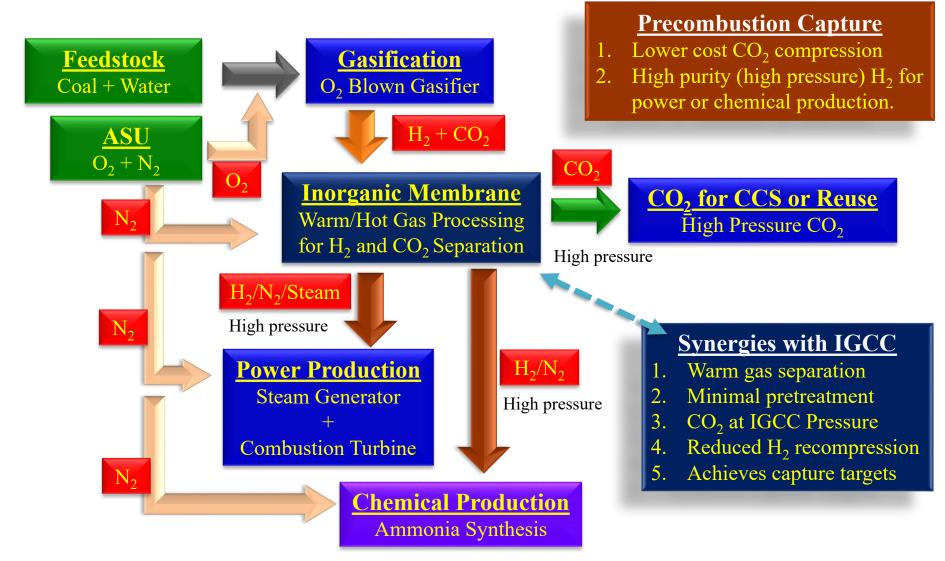
Funding: Project Budget/Cost Share: \$2.38M (DOE: \$1.91M; Cost Share: \$0.47M)

<u>Overall Project Performance Dates:</u> October 1, 2020 - September 30, 2023 (36 months); 1-year No Cost Extension to September 30, 2024


Project Participants:

- Media and Process Technology Inc...Membrane manufacturer/supplier and technology developer (POC: Dr. Richard Ciora)
- University of Southern California....Membrane and system modeling (POC: Professor Theo Tsotsis)

Overall Project Objectives:


Perform R&D to enable emerging inorganic membrane technology in Poly-generation based precombustion CO_2 capture.

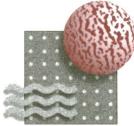
- (i) Develop & fabricate a full ceramic multiple tube bundle w/ permeate purge capability.
- (ii) Fabricate multiple bundle housing/module as a pre-commercial scale unit.

MPT TECHNOLOGY BACKGROUND

Poly-generation: Inorganic Membrane Technology Role

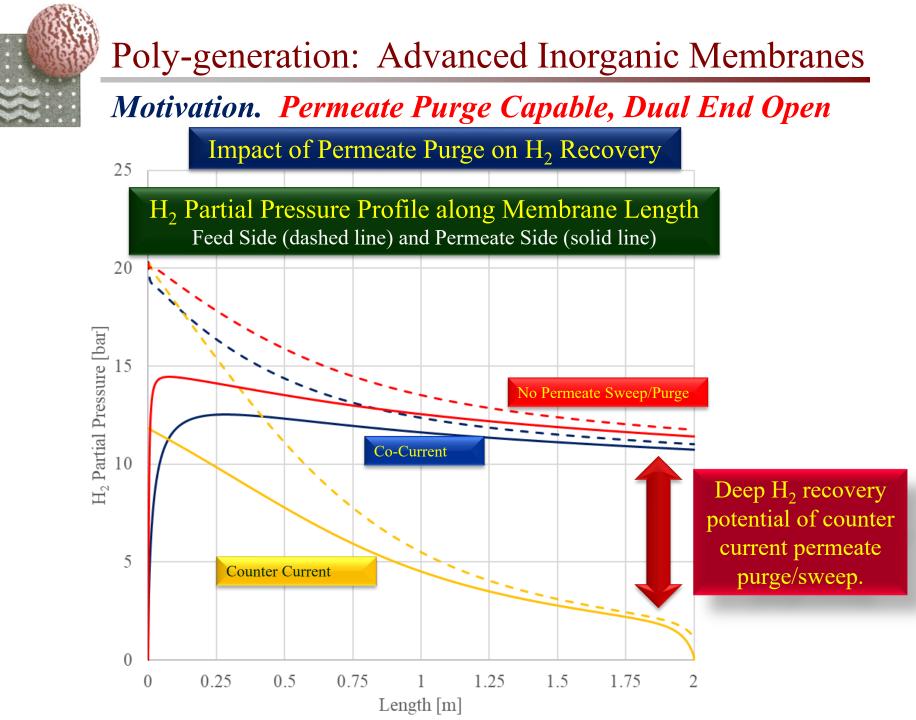
Poly-generation: Advanced Inorganic Membranes

Project Objectives and Technical Program Summary


<u>Primary Objective</u>

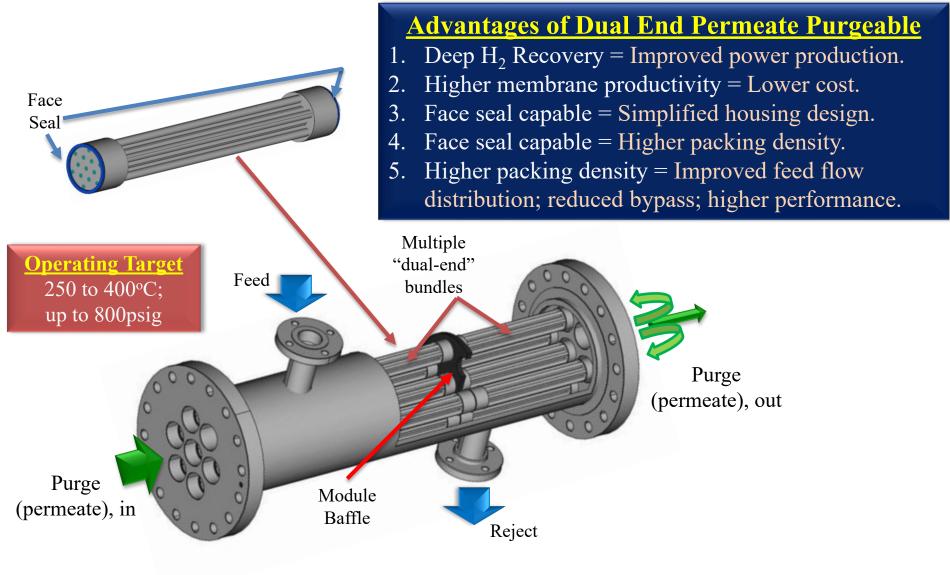
Develop a permeate sweep/purge capable full ceramic multiple tube membrane bundle and multi-bundle module.

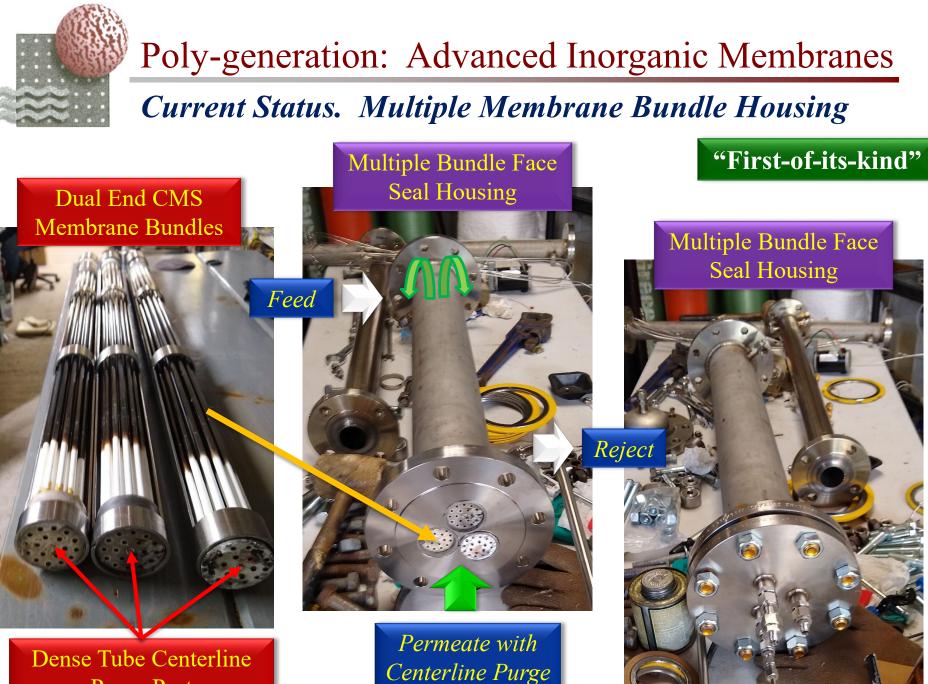
- ✓ This capability represents a Critical Technology Gap for advanced inorganic membranes in pre-combustion CO₂ capture.
- \checkmark This capability is required to achieve the >30% COE cost savings target over baseline.
- ✓ Target operating conditions of 200 to >350°C and at up to 800 psig.


Technical Program Summary

- > Develop and fabricate a permeate purgeable multiple tube bundle
- > Design and fabricate a multiple bundle housing with appropriate seals
- Conduct a range of challenge tests to demonstrate bundle/housing stability
- Conduct long term performance stability testing at the target operating conditions
- Develop CFD model to predict membrane performance and inform module configuration
- Update the DSMP TEA for Poly-generation

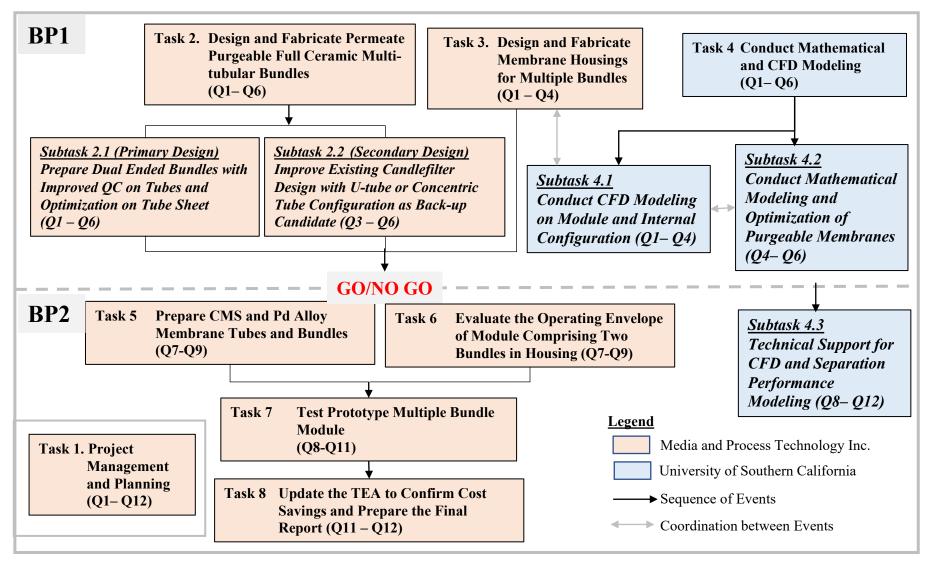
M&P TECHNOLOGY BACKGROUND

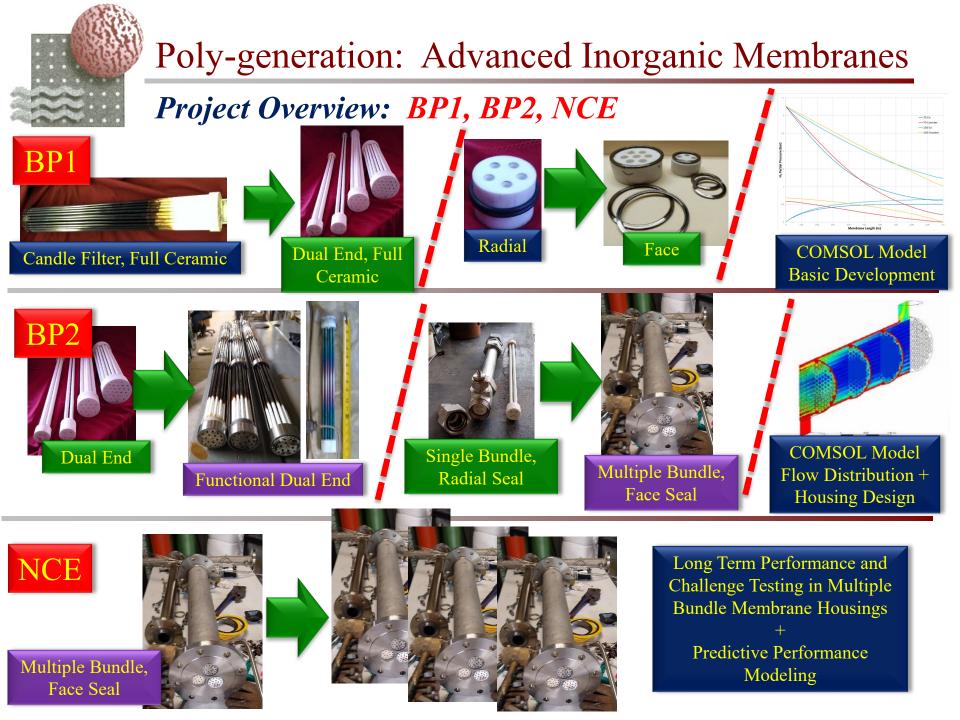




Poly-generation: Advanced Inorganic Membranes

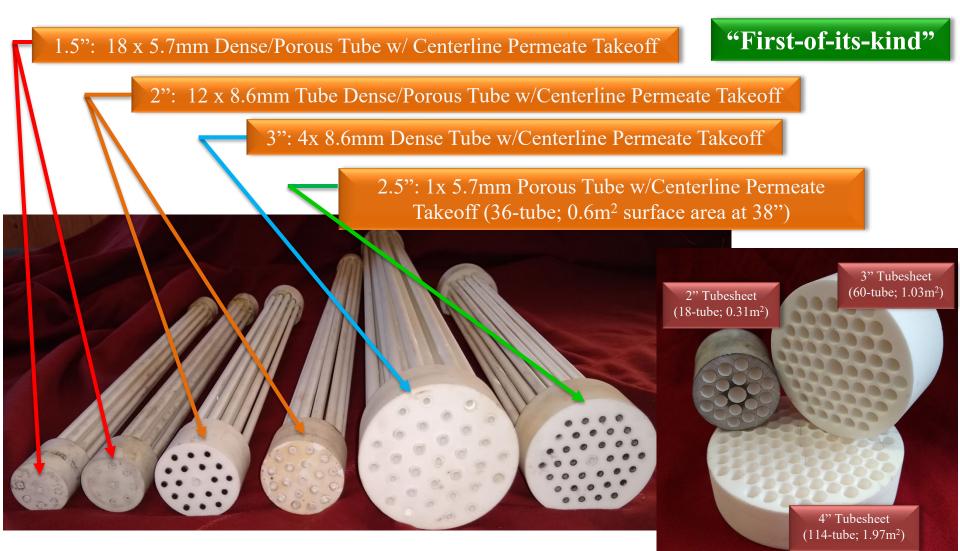
Permeate Purgeable; Face Seals; Multiple Bundle Housings




Purge Port

Poly-generation: Advanced Inorganic Membranes

Project Structure...Team Member Roles and Tasks


Poly-generation: Advanced Inorganic Membranes

Milestone Progress. **BP2**

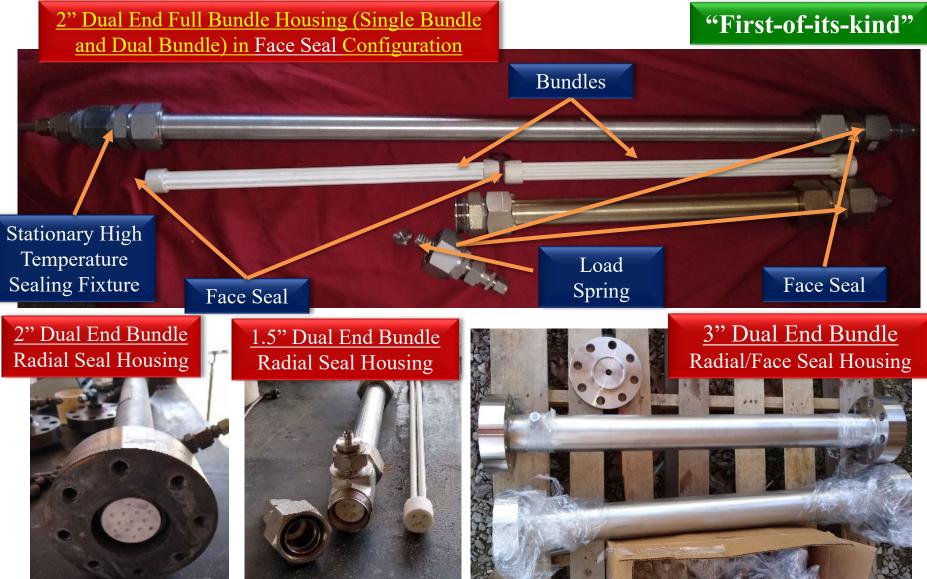
Mile- stone	Milestone Description	Target Completion	Current Status	% Completion
Ι	Complete the CFD modeling of the dual ended bundle and multiple bundle module in U-bend and permeate sweep modes with recommendations for internal baffle and other flow management devices.	Q11	Status: Continuing "bundles in parallel" model development and simulation in multiple bundle housings. Simulation of Polygeneration WGR+Membrane for PFD, HMB, TEA update. <u>Remain:</u> a. 6x Series/parallel bundles in module. b. Bundle and housing design/optimization.	~90%
J	Prepare the CMS & Pd-Ag membrane tubes and 6x dual end bundles that meet the minimum leak and compression targets.	Q9	Pd tubes, >120 of 120 (100% completion) CMS tubes, >120 of 120 (100% completion) Pd and CMS Bundles: 6x each (100% Complete)	100%
К	Complete the shakedown and performance testing in permeate sweep mode.	Q7	Pd and CMS bundle performance verification in permeate sweep mode complete.	100%
L	Complete the testing of the 3 to 4 (6) bundles as base modular unit.	Q11 (Q12)	 <u>Status:</u> Testing of the multiple bundle housing (underway) Mixed gas testing with permeate sweep (underway) Remain: a. Two bundle in series testing. b. Six bundle series/parallel testing. 	Bundle: ~100% Testing: ~40% Overall: 50%
М	Update the TEA for the new module design and process configuration with update for the Poly-generation scheme.	Q12	Status: • PFD and HMB process model simulation in DWSIM. <u>Remain:</u> Update the PFD and TEA	10%

Milestone D/E. Fabricate Permeate Purgeable Bundles (complete)

Milestone D/E. Challenge Test Permeate Purgeable Bundles

	Thermal Cy	cling, "Unlo	aded"			Thermal C	ycling,in	Housing	Pressure	Cycling, in	Housing		
Membrane ID	250°C	400°C	450°C	Membrane ID	Housing/Seal	250°C	400°C	450°C	250°C	400°C	450°C		
PG1.5-PTA-1	13	(101) 160	25	PG1.5-PTA-1	Single Face, Metal	28	27	24		6	6		
PG1.5-PT-2	0	(114) 173	0	PG1.5-PT-2									
PG1.5-PT-3	0	(91) 150	23	PG1.5-PT-3			Key	Y					BP1 De
PG1.5-DT-2	8	63	2	PG1.5-DT-2			PG	хх-уу-	.ID#				
PG1.5-DT-3	8	62	23	PG1.5-DT-3									
PG1.5-DT-6	0	0	34	PG1.5-DT-6			XX:	Bunc	lle Di	amete	er		Bund
PG1.5-DT-7	0	0	0	PG1.5-DT-7	Radial, Graphite	30	ww.	DT =	= Den	se Tul	he		
PG1.5-DT-8	1	6	0	PG1.5-DT-8	Radial, Graphite	10	yy.						
PG1.5-DT-9	0	7	0	PG1.5-DT-9	Dual Face, Metal	10		PT =	Poro	us Tul	be		
(PG1.5-DT-9)	0	0	0	(PG1.5-DT-9)	Single Face, Oring	10	V	-	••	-			
PG1.5-DT-10	0	4	0	PG1.5-DT-10	Dual Face, Metal	9	3	7		3			
PG1.5-DT-11	0	13	12	PG1.5-DT-11									
PG1.5-DT-12	0	12	24	PG1.5-DT-12	Dual Face, Oring				67				
PG1.5-DT-14	0	0	0	PG1.5-DT-14	Dual Face, Oring				39				
PG1.5-DT-15	0	0	0	PG1.5-DT-15	Dual Face, Oring				20			1.	Therm
PG1.5-DT-16	0	0	0	PG1.5-DT-16	Dual Face, Oring				75				
PG1.5-DT-6	0	34	16	PG1.5-DT-6								2.	T/C; c
PG1.5-DT-13	0	0	0	PG1.5-DT-13									1/0,00
PG1.75-DT-1	0	27	0	PG1.75-DT-1	Radial, Graphite		8		9	(27) 62			seal ho
PG1.75-DT-2	0	24	0	PG1.75-DT-2									sear nu
PG1.75-DT-3	0	10	0	PG1.75-DT-3	Dual Face, Oring				6			2	
PG1.75-DT-4	0	8	0	PG1.75-DT-4	Dual Face, Oring				6			3.	T/C; c
PG1.75-DT-7	0	0	0	PG1.75-DT-7	Dual Face, Oring				29				
PG1.75-DT-8	0	0	0	PG1.75-DT-8	Dual Face, Oring				3				
PG1.75-DT-9	0	0	0	PG1.75-DT-9	Dual Face, Oring				26				
PG1.75-DT-10	0	0	0	PG1.75-DT-10									
PG1.75-DT-11	0	0	0	PG1.75-DT-11									
PG1.75-DT-12	0	0	0	PG1.75-DT-12	Dual Face, Oring				(0) 53				R
PG1.75-DT-13	0	0	0	PG1.75-DT-13	Dual Face, Oring				(0) 53				
PG1.75-DT-14	5	(3) 6	0	PG1.75-DT-14									1 10 0
PG1.75-PT-2	5	(3) 6	0	PG1.75-PT-2									1. 43 Suc
PG2-PT-1	0	0	33	PG2-PT-1	Radial, Graphite		9	24		4			
PG2-PT-2	0	6	8	PG2-PT-2						<u> </u>			2. Dense
PG2-PT-3	0	0	8	PG2-PT-3	Radial, Graphite			22		15			
PG2-PT-4	0	0	8	PG2-PT-4									3.>1,300
PG2-DT-1	0	4	22	PG2-DT-1						l			5 1,500
PG2-DT-2	0	28	0	PG2-DT-2									4. >300 T
PG2-DT-7	0	0	0	PG2-DT-7	Radial, Graphite	21	12			17			1 . / 300 I
PG3-DT-1	12	8	0	PG3-DT-1									5 \ 500 T
PG3-DT-2	4	58	0	PG3-DT-2									5. >500 T
PG3-PT-1	0	(64) 125	0	PG3-PT-1									
PG3.5-DT-5	10	58	0	PG3.5-DT-5									
PG3.5-DT-6	2	0	0	PG3.5-DT-6		110		117	410				
Totals	68	1,052	238	I	Totals	118	99	117	412	116	6	l	

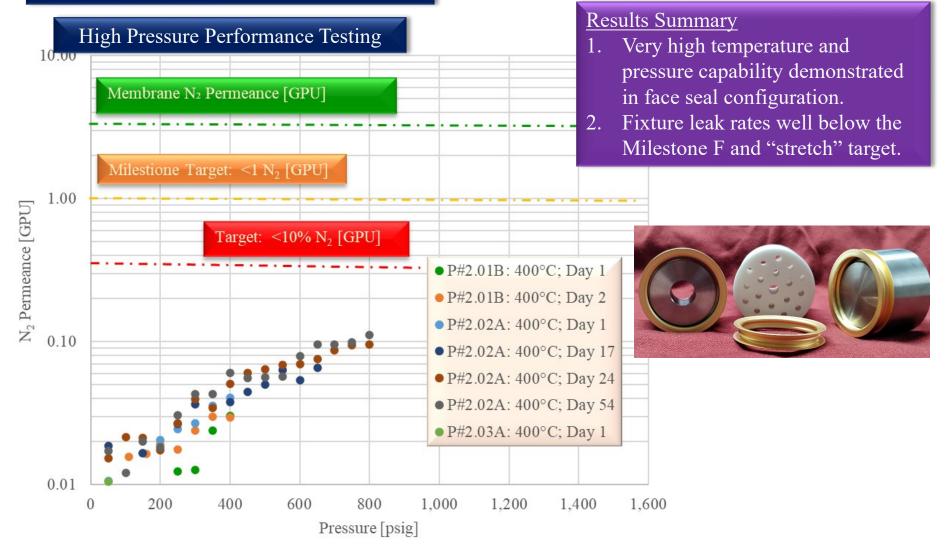
BP1 Dense and Porous Tube Bundle Challenge Testing


Test Modes

- . Thermal Cycle (T/C); unloaded
- . T/C; constrained = radial or face seal housings
- . T/C; constrained; pressure cycled

Results Summary

- 1. 43 Successful Dual End Bundles
- 2. Dense and Porous Tube
- 3. >1,300 T/C unloaded
- 4. >300 T/C loaded housing
- 5. >500 T/C loaded, pressurized


Milestone F/G. Dual End Bundle Housing Fabrication (complete)

Milestone F. Face Seal Configuration Challenge Testing (complete)

High Temperature Face Seal Housing

Milestone J. Pd and CMS Membrane Tube Fabrication (Complete)

Dual End Pd Tubes

 A. Complete >120 tubes.
 B. Performance Average: H₂ [GPU]: 3,700 H₂/N₂ [-]: >29,000

Dual End CMS Tubes

- A. Complete >120 tubes.
- B. Performance Average: He [GPU]: ~400 He/N₂ [-]: >250
- C. Outliers (~20 tubes) He [GPU]: ~550 to 700 He/N₂ [-]: >300

SEM MAG: 9.95 kg

Det: SE Detector

2 um

EGAN TESCAN

Milestone L. Pd Multiple Tube Bundle Fabrication (Complete)

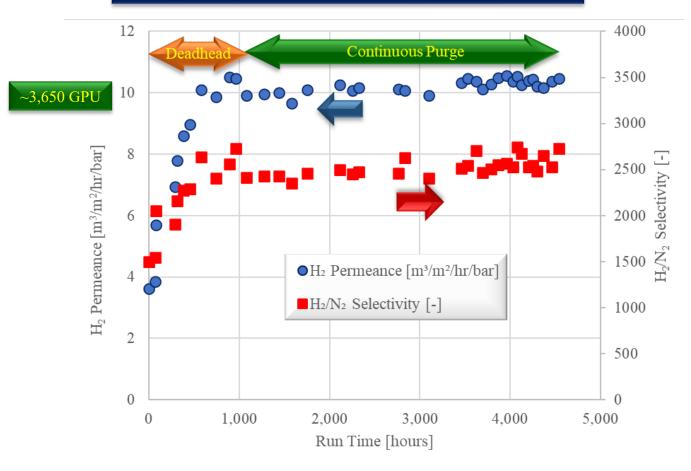
Pd Membrane Bundle Performance. QC Testing

Target performance: (i) >75% of Average Single Tube Performance; (ii) N₂ Leak Rate <5 GPU

PdB19T.01	ар J	H2 [GPU]	N2 [GPU]	H ₂ /N ₂ [-]	Comment [-]
Average Single Tube Performance	350	1,059	1.0	1,059	
Bundle PdB19T.01	-	-	-		
Day 9	331	464	2.2		
Day 16	331	469	2.4	192	
Day 17	331	N/A	2.6		
Day 17	331	912	2.5	367	Post Air Purg
	>75%?	86.1%	2.49	<5 GPU	
Day 18	336	559	3	215	
Day 21	338		2.9		
Day 21	338	986	2.7	368	Post Air Purg
	>75%?	93.1%	2.68	<5 GPU	

PdB19T.02		H2 N2 [GPU] [GPU]		H2/N2 [-]	Comment [-]
Average Single Tube Performance	350	3,850	0.2	25,667	
Bundle PdB19T.02					
Day 1	350	2,617	1.31		
Day 1	350	3,637	1.34	2,712	
	>75%?	94.5%	1.34	<5 GPU	Post Air Purge
Day 2	350	2,898	1.28	2,257	
Day 7	350	1,145	1.27	904	
Day 7	350	3,261	1.24	2,623	Post Air Purge
	>75%?	84.7%	1.24	<5 GPU	

Tube ID	Temp	H ₂	N_2	H_2/N_2	Comment
[-]	[°C]	[GPU]	[GPU]	[-]	[-]
Average Single Tube Performance	350	3,850	0.2	25,66	PdB19T.03
Bundle PdB1	9T.03				
Day 1	350		0.88		
Day 4	350	1,403	0.91	1,547	
Day 4	350	2,083	1.02	2,052	Post Air Purge
Day 13	308	1,290	1.34	962	
Day 13	308	2,536	1.33	1,909	
	>75%?	65.90%	1.33	<5 GPU	
Day 14	308	973	1.36	717	
Day 14	308	2,847	1.32	2,156	Post Air Purge
	>75%?	74.00%	1.3	<5 GPU	
Day 17	311	1,322	1.37	963	
Day 17	311	3,141	1.38	2,278	Post Air Purge
	>75%?	81.60%	1.38	<5 GPU	
Day 20	311	1,394	1.48	939	
Day 20	311	3,275	1.43	2,287	

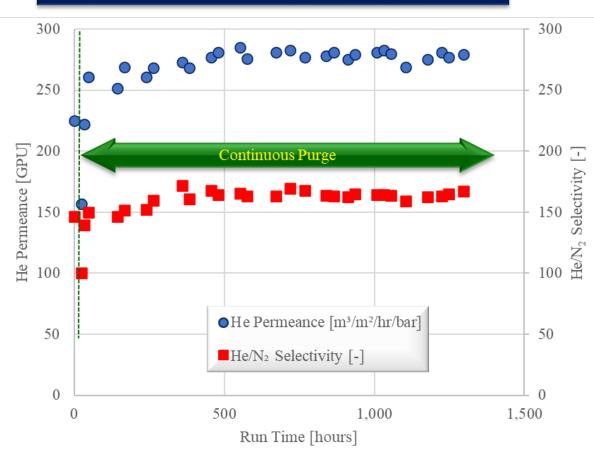

PdB19T.04, .05, .06

1.04, .05, .00						
Tube ID	Temp	Hz	Nz	H ₂ /N ₂	Comment	
[-]	[°C]	[GPU]	[GPU]	[-]	[-]	
Average Single Tube Performance	350	N/A	N/A	N/A		
Bundle PdB19T.04						
Day 1	RT	N/A	13.55	N/A		
	350	N/A				
Bundle PdB19T.05						
Day 1	RT	N/A	1.95		On-	sp
Day 4	350	3,200	1.17	<5 GPC		
Bundle PdB19T.06						
Day 1	RT	N/A	1.00	N/A		
Day 3	350	4,300	0.94	<5 GPU		

Milestone L. Pd Bundle Challenge Testing (Complete; on-going)

Long Term Performance Stability Testing

PdB19T.03



Milestone L. CMS Multiple Tube Bundle Fabrication (Complete)

			e: (i) >75	5% of /	e Perform Average Singl Rate <5 GPU	le Tube					ce RT 250	He [GPU] N/A 351 N/A N/A	№2 [GPU] 0.8 1.6 5.9 14.8	He/N2 [-] 224	Comment [-] Out of range for N2.
CMS DB19	T 01	He	N_2	He/N ₂	Comment						neance Ratio [%			permeance or	<u> </u>
	1.01	[GPU]	[GPU]	[-]	[-]					Patch Tubesheet	Leak	-		1	
Average Single								-		Day 1	RT	N/A	1.8		
Tube Performance	RT	N/A	4.1			1	6	Ser.	6	Day 1	250	N/A	1.6		Out of range for N2.
Bundle CMS.DB	250	361	1.4	254			117	1 ma		He Pern	neance Ratio [%	6] N/A	[He and N	permeance or	i-spec]
		27/4	11.2	1			1	11		CMS DB19T.	05 mp	He	Nz	He/N ₂	Comment
Day 1	RT 250	N/A	6.3	24	II-L N	1						[GPU]	[GPU]	[-]	[-]
Day 2	250	214 275	6.7	34 41	High N₂ Overnight N₂ purge					Average Single					
	ice Ratio [%]	76.2	[He permeand		ermeance high]					Tube Performance	RT	N/A	0.9		
Bundle CMS.DB1			[11e permeane	e on spec, 141 p	ermeance mgnj						250	385	1.3	289	
Day 3	250	166	1.98	84						Bundle CMS.DB19		27/4			
Day 5 Day 5	250	100	1.96	75						Day 1	RT	N/A	3.0		
Days	250	147	1.50	13	ļļ						250	N/A 346	3.7 3.8	92	N2 purge.
			N	TL-AL						Day 3	250	340	3.6	92 104	N2 purge.
CMS DB1	9T.03	p H		He/N ₂							ance Ratio [%]			permeance on	
		[GP	U] [GPU]		[-]								-		
Average Single Tube Performance		N/	A 0.9							CMS DB19	T.06 –	He	N ₂	He/N ₂	Comment
Tube Performant	250	35		224				(Part)		1 11	[°C]	[GPU]	[GPU]	[-]	Comment
Bundle CMS.D			1 1.0	224			111	a second		Average Single	T.	[GPU]	Gruj	[-]	[-]
	RT	N/	A 0.4			1	onlig	- Anna		Tube Performance	RT	N/A	1.4		
Day 1	250	22		170		1	0				250	344	1.3	258	
D 2	_				Start 312			C.		Bundle CMS.DB	19T.06				
Day 3	250	26		198	Start N2 purge.					Day 1	RT	N/A	1.8		
Day 7	250	30		224	N2 purge.					<u> </u>	150		2.4		
Day 16	250	24		169	CMS DB1	9T.02	He	N2	He/N ₂	Comment	250	372	3.3	114	N2 purge.
Day 21	250	28		201		1.02	[GPU]	[GPU]	[-]	[-]	250	367	3.3	112	N2 purge.
Day 22	250	29			Average Single Tube Performance	RT	N/A	2.5			250	365	3.0	123	N2 purge.
Day 29	250	30	-	215		250	339	1.6	217		neance Ratio [%]			permeance on-	
He Per	meance Ratio	[%] 85.	• [He and N	la permeance o	m-spec Bundle CMS.DB1						250	365	3.0	123	N2 purge.
					Day 1	RT	N/A	1.6							
						250	225	1.5	147						
					Day 2	250	270	1.6	170	Overnight N2 purge					
					He Perm	eance Ratio [%]	79.6	[He and N₂ p	permeance on-sp	pec]					

Milestone L. CMS Bundle Challenge Testing (Complete; on-going)

Long Term Performance Stability Testing (Face Seal Housing Configuration)

CMS DB19T.03

Milestone L. Mixed Gas with Sweep Testing (Complete; on-going)

CMS DB19T.02 Mixed Gas with Sweep (Ar) (Feed: 30/70 He/N₂; T: 2<u>50°C</u>)

PdB19T.03 Mixed Gas with Sweep (Ar) (Feed: 30/70 H₂/N₂; T: 340°C)

			Actual	Predicted	Error	Actual				Actual	Predicted		Error	Actual		
Part	Feed	Sweep	Permeate	Perme ate	Actual/	Reject	rt	Feed	Sweep	Permeate	Permeate	Stage	Actual/	Reject		
ID	Pressure	Rate	Rate	В.	Model	Не	A.)	Pressure	Rate	Rate	Rate		Model	H_2		
[#]	[psig]	[cc/min]	[cc/min]		[%]	[%]	[#]	[psig]	[cc/min]	[cc/min]	[cc/min]	B .	[%]	[%		
CMS DB19T.02					7	PdB19T.03								<u> </u>		
No sweep	65	0	707	556 🥿	127.3	18.6	No Sweep	51.5	0	2,386	2,404	9.3 -	99.2	23.5		
Co-current	65	308	1,035	1,081	95.8	16.4	No Sweep	50.8	0	2,393	2,355	9.2	101.6	23.7		
Counter	65	308	1,124	1,040	108.1	12.3	No Sweep	50.5	0	2,372	2,279	9.4	104.0	24.1		
							Co-current	51.5	751	4,511	4,297	17.8	105.0	19.1		
No sweep	65	0	406	359	113.2	14.2	Co-current	51.0	751	5,172	5,172	20.8	100.0	19.8		
Co-current	65	308	714	778	91.8	11.6	Counter	50.0	751	4,571	4,260	17.6	107.3	14.8		
Counter	65	308	863	820	105.2	5.5	Counter	50.0	752	4,752	4,334	17.7	109.7	14.1		
										,	,					
No sweep	100	0	758	809	93.8	13.3	A Data									
Co-current	100	308	1,131	1,179	95.9	11.5	v		•	inter cur		0		ostantiai		
Counter	100	308	1,280	1,212	105.6	9.2	reductio	on in fas	st gas re	eject pur	ity (high	er recov	very).			
No sweep	100	0	696	722	96.4	13.0	R Mod	al Pradi	ictions	COMS	OI mod	al norm	anto rai	to in		
Co-current	100	308	1,006	1,122	89.6	10.5	B. Model Predictions: COMSOL model permeate rate in reasonably good agreement with actual performance.									
Counter	100	308	1,136	1,119	101.5	7.2	reasona	bly good	d agree	ment wit	h actual	perfor	mance.			

Milestone L. Mixed Gas with <i>Steam Sweep (on-going)

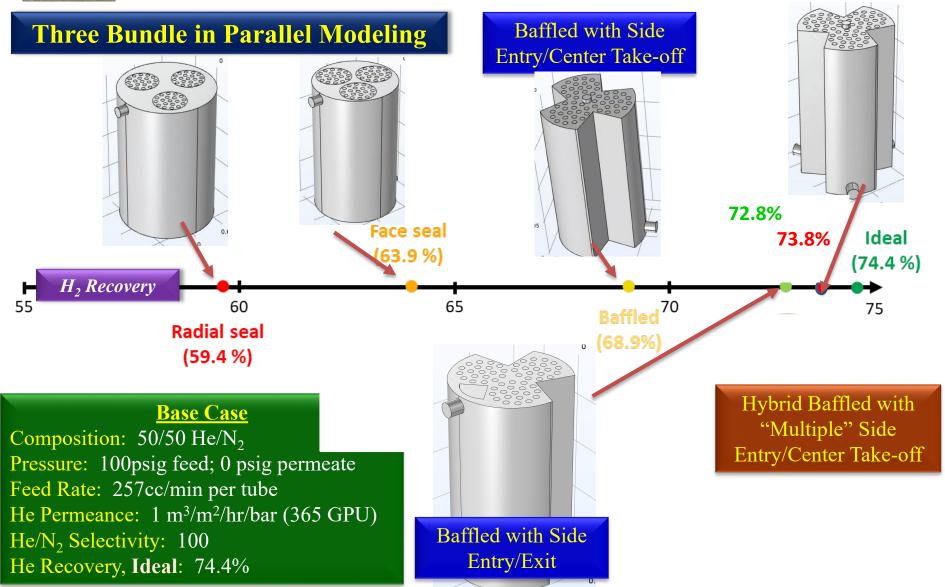
Steam Sweep for Pressurized H₂ (permeate) Delivery (Feed: H₂/CO₂ at 50/50; T: 359°C)

								Sweep		
						Total		Free	Target	Actual
Run	Run	Feed	Perm			Perm	Sweep	Perm	Reject	Reject
ID	Mode	Press	Press	Feed	Reject	Flow	Flow	Flow	Gas	Comp
[-]	[-]	[psig]	[psig]	[cc/min]	[cc/min]	[cc/min]	[cc/min]	[cc/min]	[_]	[%]
Steam	sweep								Α.	
374	Sweep	56.5	0	1,589	1,024	1,221	656	566	CO2	84
378	Sweep	57.0	0	1,635	1,085	1,106	556	550	Cur	84
385	No Sweep	57	0	1,442	1,001	441	0	441		78
Steam	sweep at elev	ated perme	ate pressure	a.						
418	Sweep	91.5	0	1,896	1,127	2,756	1,987	769	CO ₂	N/A
419	Sweep	91.8	52	1 625	1,164	2,521	2,060	461	CO2	N/A
422	Sweep	91.9	56	1,6-	1,171	2,550	2,090	460		
No swe	eep at elevated	d permeate	pressure.							B .
426	No Sweep	89.5	0	1,793	1,125	668	0	668	CO ₂	N/A
430	No Sweep	89.9	23	1,474	1,221	253	0	253	CO2	N/A
431	No Sweep	90	35.8	12	1,354	42	0	42	No.	N/A
432	No Sweep	90	43	1,320	1,320	0	0	0	CO ₂	N/A

Milestone L. Multiple Bundle Module Testing (on-going)

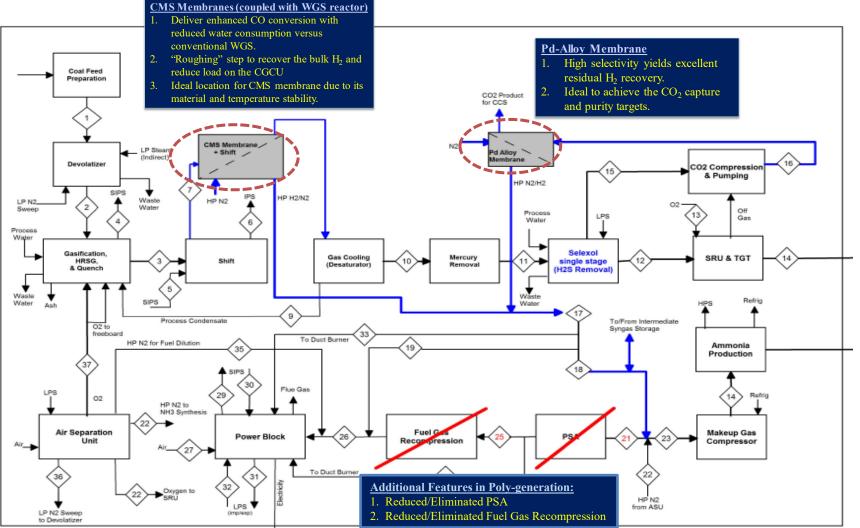
1st Bundle Shakedown Testing in the 3-Bundle Housing

CMS DB19T.04 Mixed Gas Testing (Feed: 70/30 He/N₂; T: 250°C)

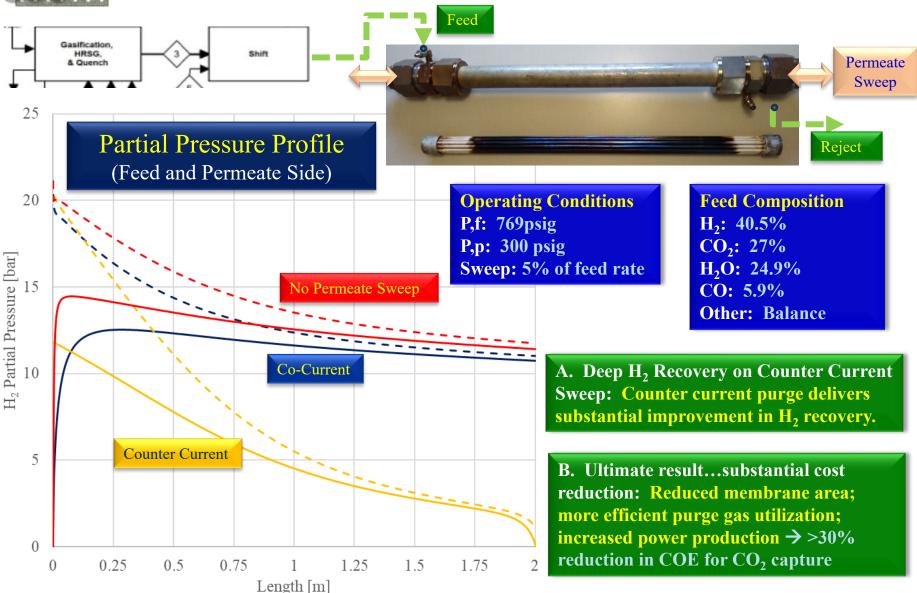

CMS DB19T.04

Dense Tube	
Dummy	
Bundle	

	Actual	Predicted	Error Permeate	
Feed	Permeate	Permeate	Actu	Stage
Pressure	Rate	Rate	Mod A	Cut
[psig]	[cc/min]	[cc/min]	[-]	[%]
45.0	1,110	1,056	1.05	65.9
45.0	1,095	1,142	0.96	58.0
45.0	1,180	1,304	0.91	49.7
45.0	1,371	1,438	0.95	46.0
65.2	1,800	1,676	1.07	68.8
65.2	1,734	1,945	0.89	52.2
65.2	1,915	2,143	0.89	46.8
80.1	2,125	2,140	0.99	64.4
80.1	2,284	2,555	0.89	51.2
63.0	2,013	1,823	1.10	66.1
63.0	1,729	1,717	1.01	62.5
63.9	1,544	1,621	0.95	61.3
63.9	1,528	1,533	1.00	64.3


A. Good agreement between actual and predicted permeate rate in the multiple bundle housing: Error typically under 5% with some excursions to 10%. Consistent with single bundle housing results.

Milestone I/M. COMSOL Model Predictions (on-going)



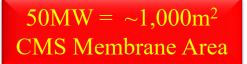
Milestone M. Poly-generation PFD and TEA Update (on-going)

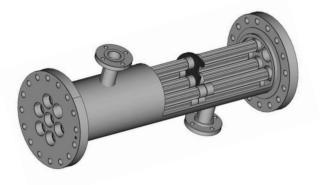
Milestone I/M. Sweep Modeling for TEA Update (on-going)

Summary. BP1/BP2

Summary of Project Status and Successes

- 1. <u>Dual End Bundle Fabrication and Mechanical Challenge Testing (BP1).</u> Successfully fabricated 43 dual end purgeable dense and porous tube bundles at up to 3" diameter ("first-of-its-kind"). No failures in over 2,000 challenge tests up to 450°C.
- 2. <u>Bundle Seal Leak Performance Testing (BP1).</u> Demonstrated bundle seal leak rates well below the 1 GPU target in radial and face seal style housings at temperatures to 400°C and pressures to 800psig ("first-of-its-kind").
- **3.** <u>Pd and CMS Dual End Bundles (BP2).</u> Six of each type; 18-tube + center-line permeate purge. ("first-of-its-kind").
- 4. <u>Performance Evaluated Pd and CMS Dual End Bundles (BP2).</u> Bundle mixed gas testing with co-/counter current permeate sweep ("first-of-its-kind").
- 5. <u>Performance Evaluated First 3-bundle Housing (BP2)</u>. Good agreement with model predictions with the first CMS membrane bundle ("first-of-its-kind").
- 6. <u>Developed a COMSOL based CFD Model for Membrane Performance</u> <u>Prediction (BP1/BP2).</u> Successfully predicted the mixed gas performance of the 18-tube membrane bundles with permeate sweep. Targeting multiple bundle housing design optimization, performance modeling, and Polygeneration process development/TEA.





Project. BP2/NCE

Next Step

- 1. <u>Complete the testing of the first multiple bundle in parallel housing (3-bundle) with</u> <u>permeate sweep.</u> Battery of mixed gas testing with permeate sweep demonstration of the 3bundle in parallel housing. Simulated gasifier off-gas with N₂ and steam permeate sweep.
- 2. <u>Fabricate and conduct testing with additional multiple bundle housings.</u> Additional 3bundle and a 6-bundle housing (3-parallel x 2-series).
- 3. <u>FOCUS: Conduct long term challenge testing with multiple bundle housings.</u> Confirm the performance and mechanical stability of the bundles, seals, and overall housing design.
- 4. <u>COMSOL CFD Model for Membrane Performance Prediction.</u> Large scale housing design optimization; Poly-generation process and TEA development.
- 5. <u>Fabricate the first 4" (~2m²) dual end bundle.</u> Demonstrate/highlight scalability.

21 Bundle at 2m² each (4") 50MW = 24 Housings

Media and Process Technology Inc

Acknowledgements

The material presented here is based upon work supported by the Department of Energy under Award Number DE-FE0031930.

Disclaimer. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Questions?