

2023 FECM/NETL Carbon Management Research Project Review Meeting

Perspectives on China CCUS Developments and Plans

Tao Wang, Professor Email: oatgnaw@zju.edu.cn

State Key Laboratory of Clean Energy Utilization Zhejiang University, China Aug. 30th, 2023

Reposition of CCUS Technology under the carbon neutrality goal of China

CCUS has gradually transitioned from being a "strategic reserve technology for large-scale low-carbon utilization of fossil energy (Can be replaced) " to becoming an "integral component of the technology portfolio for achieving carbon neutrality goals (Cannot be replaced)"

Requirement and potential of CCUS under the carbon neutrality goal of China

By analyzing the application of CCUS technology in the whole industry and its future demand for emission reduction, it is predicted that China's demand for CCUS emission reduction under the Carbon Neutrality goal will be:

China CCUS Annual Report (2023) – The administrative center for China's agenda 21

Carbon sequestration potential of CCUS in China Energy sector

- □ For the fixed sources of CO₂ emissions from energy and industry, about 2.8 billion tonnes/year can be geologically sequestered within 50 km and 4.1 billion tonnes/year within 100km (IEA ETP2020)
- □ For comparison, China's terrestrial ecosystems have a carbon sink potential of 0.7-1 billion tonnes/year

CO₂ stationary emission sources and potential geological storage distribution

45-year average of ecosystem-atmosphere CO2 exchange

Current CCUS Status in China

Technical Development Level - CCUS

Capt

- China's CCUS technologies have made progresses Most technologies, postcombustion capture, chemicals synthesis, mineralization, EOR etc., are in industrial demonstration stage Seldom technology, except
- tanker transportation is in commercial application

		C
	Pre-combustion-solution adsorption method Pre-combustion-solution adsorption method	
	Pre-combustion-membrane separation method	
	Pre-combustion-cryogenic fractionation method	
	Post combustion - chemical adsorption method	
Capture	Post combustion - chemical adsorption method	
	Post combustion - physical adsorption method	
	Post combustion - membrane separation method	
	Oxy-fuel combustion - normal pressure	
	Oxy-fuel combustion - pressurized	
	Chemical looping combustion	
	Direct capture from air	
Transportation	I anker transportation	
	Pipeline transportation	
	Reforming to produce synthesis gas	
	Prepare liquid fuel	
	Synthesize methanol	
	Prepare olefins	
	Photocatalytic conversion	
	Synthesize degradable polymers	
Cnemical	Synthesize cyanale/polyureinane	
&biological	Stool clag minoralization utilization	
utilization	Phosphogypsum slag mineralization utilization	
	Combined mineralization in processing notassium feldspar	
	Concrete maintenance and utilization	
	Microalgae bioutilization	
	Microbial immobilization for synthesis of malic acid	
	Gas waste utilization	
Geological	Enhanced oil recoverv	
	CBM displacement	
	Enhanced gas recovery	
utilization	Enhanced shale gas recovery	
&storage	leaching mining	
· ·	Heat utilization utilization	
	Strengthening deep saline water exploitation and storage	
	Pipe network optimization	
Integrated	Cluster hub	
optimizatior	Safety inspection	

Current CCUS Status in China

Technical Development Level - DAC

Research institute and energy companies have deployed China early DAC prototypes and demonstrations recently

□ The scale of demonstration needs to be enlarged

Project	Conducted by
100 tons/year DAC prototype	China National Petroleum Co.
20 tons/year DAC+ synthetic fuel prototype	China Energy Construction Co.
100 tons/year DAC prototype	Shanghai Jiaotong University
10 tons/year DAC+ greenhouse prototype	Zhejiang University
10 tons/year DAC prototype	Huaneng Group
2-ton/day DAC demonstration	Linhe Climate Technology (Beijing)

Demonstration Project

- Till 2023 Feb, China has ~100 CCUS demonstration plants in operation or planning.
- Over half of the demonstrations are in operation, with total capture capacity of 4 million t/y, total injection capacity of 2 million t/y.

Demonstration Project

- Currently, China's CCUS demonstration projects for CO₂ capture includes multiple industries, such as electricity, oil and gas, chemicals, cement, and steel.
- The scale of operational and planned CCUS demonstration projects has significantly expanded. There are over 40 projects with a capacity of 100,000 tons or more, including over 10 projects with a capacity of 500,000 tons or more. Several projects with capacities exceeding one million tons are currently in the planning stage.

CCUS demonstration projects in China (industry distribution)

Industrial demonstration of flue gas carbon dioxide capture

150,000 t CO₂/y Power Plant Project China Energy Group, Yulin City, 2021

Capture rate	90%
Investment	RMB 130 Million
Reg. Energy	2.4 GJ/tCO ₂
Total Cost	~\$ 41 / t CO ₂

500,000 t CO₂/y Power Plant Project China Energy Group, Taizhou City, 2023

Capture rate	90%
Investment	RMB 385 Million
Reg. Energy	2.4 GJ/tCO ₂
Total Cost	~\$ 30 / t CO ₂

Industrial demonstration of CO₂ utilization

CO ₂ conversion rate	>95%
Solid waste	200,000 t/y
Product	>15 MPa concrete brick
Benefit	~\$ 75 / t CO ₂

10,000 t CO₂/y algae plant, Erdos City, 2021

spirulina product

CO ₂ efficiency	> 70%
CO ₂ conversion rate	≥1.5 g/L/d
Product	Health care products
Benefit	~\$ 2700 / t CO ₂

Current CCUS Status in China

Policy and Roadmap

- China is committed to CCUS and maintains the funding for CCUS research, promoted technological advancement and the successful implementation of major demonstration projects
- According to incomplete statistics, as of the end of 2022, China has issued over 70 policy documents related to CCUS. These documents cover various aspects such as planning, standards, roadmaps, and technology catalogs.

Funding

- CCUS projects are deployed in the National Key R&D Program during China's "Fourteenth Five-Year"
- From 2022 to now, 10 key technologies R&D projects are planned and funded by MOST, Over 50 organization, such as university, research institutes and enterprises, participate in the special program
- □ Total funds of over 500 million RMB are invested into the R&D work

Challenges and Suggestions

Key Issues in CCUS Development: Technology

- Key technologies are not mature enough.
- Large-scale demonstration of full process is lacking.
- Blank of CCUS applications in steel or cement industries.
- Facing the risk of technology lock-in in time.
- Facing the challenge of source-sink matching dislocation in space.

陆海统筹源汇匹配分布情况 The matching source-sink distribution

Operating life of major emission-intensive assets

Challenges and Suggestions

Key Issues in CCUS Development: Market

 High cost of emission reduction restricts the popularization and application of CCUS technology

Abatement cost of CCUS is RMB 100-500 /ton CO_2 , also increasing the cost of power generation if applied.

Lack of effective business model

It's difficult to collaborate across enterprises and industries for CCUS projects .

Challenges and Suggestions

Key Issues in CCUS Development: Cluster planning

CCUS industrial clusters can effectively reduce the technology costs, the regional distribution of future industrial clusters should be planned in the future

The development of CCUS technology requires extensive, in-depth, and pragmatic international cooperation

Bilateral cooperation

Strengthen cooperation in CCUS R&D, regulations and standards, and incentive policies

Multilateral cooperation

UN, WB, CSLF, CEM, MI and other international multilateral mechanisms to promote knowledge sharing and technology transfer.

