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❑ Operation optimization and risk assessment in geological carbon 

sequestration (GCS) require a multitude of forward simulations, 

which are computationally intensive.

❑ Deep learning (DL) models have been widely used as surrogate 

models for fast prediction of state variables, i.e., pressure and CO2

saturation.

❑ DL model training in high-dimensional spaces is less efficient and 

prone to overfitting because of the limited number of training data.

Motivation

❑ Develop DL-based workflow, which incorporates dimension reduction (DR) methods and DL models, as surrogate models 

for forward simulations.

❑ Develop efficient DR and reconstruction models for 3D CO2 saturation fields.

❑ Apply the workflow to datasets of the Gulf of Mexico (GoM) and Illinois Basin Decatur Project (IBDP).

Research Objectives

1. GoM: 96 simulations. 84 in training dataset and 12 in

testing dataset. Dimensions: (54, 48, 92).

Dataset
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Workflow diagram integrating DR methods and DL 

models to predict state variables.

2. IBDP: 100 simulations. 90 in training dataset and 10 in 

testing dataset. Dimensions: (126, 125, 110).

❑ Output state variables: 

• Pressure:

720 time steps

• CO2 saturation:

720 time steps

❑ Input parameters:

• Geological models:

Three realizations

• Injection rates and time:

40 injection strategies

Geological model State variables

❑ Output state variables: 

• Pressure:

50 time steps

• CO2 saturation:

50 time steps

❑ Input parameters:

• Geological models:

100 realizations

• Injection rates and time:

One injection strategy

❑ Principal Component Analysis (PCA) and inverse PCA 

▪ Basic DR and reconstruction models

▪ Applied to the geological model and 3D pressure data

❑ Proposed strategy: PCA of 2D data and 3D reconstruction model

▪ Convolutional neural network (CNN)-Multilayer perceptron (MLP) 

▪ Designed for 3D CO2 saturation data

❑ MLP model as mapping function in latent spaces

Methodology

Geological model State variables

Proposed strategy

GoM dataset: Pressure

❑ PCA extracts latent variables of geological model 

and 3D pressure data effectively

❑ Small error (MSE: 2.92×10-7) of the complete 

workflow

❑ Large prediction errors occur at the beginning of 

injection and post-injection periods

❑ Large prediction errors occur at perforation interval

❑ 160 times faster than the fully-physics simulator

GoM Pressure results GoM Saturation results GoM 3D saturation visualization

GoM dataset: CO2 Saturation

❑ Proposed strategy extracts latent variables of 3D saturation 

data effectively

❑ Small error (MSE: 2.93×10-5) of the complete workflow

❑ Prediction errors increase during injection period and plateau 

during the post-injection period

❑ Specific layers have large prediction errors

❑ Large prediction errors are on boundaries of CO2 plume

❑ 160 times faster than the fully-physics simulator

IBDP Dataset

• 4D (space-time) PCA-like (Karhunen-Loeve [KL]) 

decomposition of the pressure and saturation and 3D 

KL decomposition of conductivity.

• DNN map between KL coefficients (latent variables) 

of the conductivity field and KL coefficients of the 

pressure and saturation fields.

• Relative errors are larger for saturation than for 

pressure.

IBDP Saturation cross-section

IBDP Pressure cross-sectionSaturation testing error (RMSE) Pressure testing error (RMSE)
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