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need for secure, affordable, and environmentally sound fossil energy

supplies. The U.S. Department of Energy’s National Energy Technology

Laboratory (DOE-NETL) has been developing methods and tools (the

online Carbon Dioxide Storage prospeCtive Resource Estimation Excel

aNalysis (CO,-SCREEN) tool) to estimate carbon dioxide (CO,) storage

potential in subsurface reservoirs. Esaline‘ — EAEhE¢ EVEd Sy
In this study scCO, was injected over the course of 30 years into brine- -~

where 4,, h,, ¢, p are the areal size of the formation, the thickness of Vi, Qi,t, Sy, are volume of injected scCO,; mass flowrate,
the formation, total porosity, and CO, density (estimated at average injection time, and irreducible water saturation.

pressure and temperature of the storage formation), respectively.
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displacement (E,) and microscopic displacement (E,) were simulated using where E,, Ep,, and E.; are the fraction of the geologic area, thickness . . . ) ) the accessible volume around the CO, phase (scCO,);
TOUGHS. The first term deals with efficiency of CO, propagation into an A e 8 . ' ' : . . . injection well. The area of the dashed circle  White color: mobile wettin
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A key reservoir parameters, initial Formation and CO,BRA sample names corresponding to similar lithology and depositional environments,  coupling CO,BRA and TOUGHS3 using a lookup table Reservoir models Reservoir modeling
conditions, and injection scenarios and CO,BRA sample porosity, permeability (md), and parameters of relative permeability curves . o
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Length 2,000 m environment name porosity perm.(mD) i T Cozir - oz INFILE Porosity T=93°C
Thickness 55 and 75m - ; ) ) = keyword Kavg =214 mD
1 Lower Mt. Simon Sandstone Marginal marine Bandera Brown A 0.164 124 0.566  1.00 0.00 0.320 w E B, =2.60
Mesh size 35 x 42 and 35 x 62 ] . . o 5
2 Cranfield Sandstone Deltaic complex fluvial Castlegate 0252 865 0.705 1.00 0.00  0.185 eed saturations for S Eo ET—— :
Number of elements 1,470 and 2,170 ] . . IF First Call: NO CO2BRA rel. perm 5% £ ; Sandstone: Shallow Marine
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. . Save the look-up table on disk in binary format ™ ?, § B o
Initial conditions T ol -
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Initial pressure (GASIS database 2 GEJ > S35 P =27.6 MPa
Pressure gradient 10.14 kPa/m MPI1 1/0 broadcast for parallel execution 9 © % & i € 0.25 T=96°C
Initial temperature GASIS database e ! %;) é - g oo g Eavg:;z;n ’
Temperature gradient 0.02°C/m & \_ @uate kreoa andD - ead
Brine concentration 8 wt.% ' . Carbonate: Reef Limestone
Pore compressibility 45" pa’’ X . N . : . .. T - _F:;Z'?CMPa
N | © Core Scale CO,BRA experimental relative permeability data is directly e S B 0.00 -
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Injection period 30 years CO,BRA relative permeability for CO,-brine drainage l ‘ of select I|thology and deposmonal environment . . COZ plume propagation in heterogenous
(top) and well logs for a sandstone/marine formation , o= T
erforation eservoLr 1CETIE RS
Perforati Reservoir thicks bottom reservoir models after 30 years of injection

SUMMARY

The heterogenous reservoir models mimicking various lithology and depositional environments were created using well logs and
core sample measurements of corresponding formations.

Ey and E ;4 efficiencies after 30 years of CO, injection in
reservoir models of various lithology and

Calculating Prospective Storage — CO,-SCREEN Tool .

depositional environments ¥ COx-Screen - O X | ¥cOorSaen - 0 X | ¥ corsaeen - O X | 2. The geostatistical approach was used to generate up to 9 realizations of porosity and coupled permeability fields for reservoir
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Sandstone: Fluvial (Porosity = 25 %, Permeability = 127 mD) © Use Muttiple Grids | S the higher contribution of capillary forces results in better E, values (expressed through P,, and P, values).
® CO28RA (2022) ' IEA (2009) Snsllloy [ (Bess ) Total Efficiency 10.53 14.35 18.65 % | 6. Tightreservoirs with low permeability and porosity demonstrate higher E,, and E,, implying more efficient volume and pore
CO2BRA (2022 s . . . . .
| (2022 Lithology and Depositional Environment Sandsione: Shallow Narine network utilization. In other words, higher efficiency factors do not mean more CO, can be placed in a formation, rather that the
Lithology and Depasitional Environment Sandstone: Shallow Marine V‘ o o i available volume and pore space will be more fU”y filled. A low pOFOSity reservoir with a hlgh efﬁCiency factor mlght hold less COZ
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o Doration (oo o |+ than a high porosity reservoir with a low efficiency factor.
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B httpS-//edX-neﬂ-dOE-SOV/dataSGt/COZ screen o ; rage EHEEney Fastors T 7. New time-dependent volumetric and microscopic efficiency factors are incorporated into CO,-SCREEN tool that now provides a
\ - - = = capability to tailor storage efficiency to select lithology and depositional environment.
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