Simulated CO₂ storage efficiency in sandstone and carbonate reservoirs: CO₂-SCREEN tool upgrade

Evgeniy Myshakin^{1,2}, Foad Haeri^{1,2}, Dustin Crandall¹, Angela Goodman¹ ¹US Department of Energy, National Energy Technology Laboratory, Pittsburgh PA; ²LRST, NETL Support Contractor, Pittsburgh, PA

INTRODUCTION

The Regional Initiative to Accelerate Carbon Capture, Utilization, and Storage (CCUS) Deployment is supporting the Office of Fossil Energy and Carbon Management's (FECM) mission to help the United States meet its need for secure, affordable, and environmentally sound fossil energy supplies. The U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) has been developing methods and tools (the online Carbon Dioxide Storage prospeCtive Resource Estimation Excel aNalysis (CO_2 -SCREEN) tool) to estimate carbon dioxide (CO_2) storage potential in subsurface reservoirs.

In this study scCO₂ was injected over the course of 30 years into brinesaturated heterogenous reservoir models for clastics, limestone, and dolomite lithologies and Deltaic Fluvial, Aeolian, Shallow Marine, and Reef depositional environments.

The CO₂ storage efficiency terms are served as inputs in that tool to calculate storage potential in a targeted reservoir. Volumetric displacement (E_v) and microscopic displacement (E_d) were simulated using TOUGH3. The first term deals with efficiency of CO₂ propagation into an accessible reservoir volume, while the second term evaluates effectiveness of native fluid displacement with CO₂ The CO₂ storage efficiency factors were evaluated dynamically at select time points using P_{10} - P_{90} percentiles.

where A_t , h_g , ϕ_t , ρ are the areal size of the formation, the thickness of the formation, total porosity, and CO₂ density (estimated at average pressure and temperature of the storage formation), respectively.

The storage efficiency (E_{saline}) term reduces the estimation of stored CO₂ mass at a specific site to accommodate the complexities of the geologic factors and fundamental processes associated with injection, and storage.

reservoir volume accessed by CO₂ plume; displaced by CO_2 .

A key reservoir parameters, initial conditions, and injection scenarios Mesh size and model dimensions 5,000 m Length 55 and 75 m Thickness 35×42 and 35×62 Mesh size 1,470 and 2,170 Number of elements Rock properties Porosity Heterogeneous Permeability Heterogeneous Number of geostatistical realizations CO₂BRA database Relative permeability Lithology-sensitive* Capillary pressure Initial conditions GASIS database Initial pressure 10.14 kPa/m Pressure gradient GASIS database Initial temperature 0.02°C/m Temperature gradient 8 wt.% Brine concentration 4.5⁻¹⁰ Pa⁻¹ Pore compressibility Injection scenarios 400 and 800 tons/day Injection rate 30 years Injection period Reservoir thickness Perforation

 E_V and E_d efficiencies after 30 years of CO₂ injection in reservoir models of various lithology and depositional environments Sandstone: Aeolian (Porosity = 25 %, Permeability = 200 mD) Sandstone: Shallow Marine (Porosity = 13 %, Permeability = 4.5 mD) Sandstone: Fluvial (Porosity = 25 %, Permeability = 127 mD) Carbonate: Shallow Marine Dolomite (Porosity = 18 %, Permeability = 6 mD) Carbonate: Reef Limestone (Porosity = 10 %, Permeability = 20 mD) 20 40 100 80 Storage Efficiency (%) Volumetric Efficiency Microscopic Displacement

U.S. DEPARTMENT OF

IERGY

Formation and CO₂BRA sample names corresponding to similar lithology and depositional environments, and CO₂BRA sample porosity, permeability (md), and parameters of relative permeability curves

V	Formation name	Lithology	Depositional environment	CO ₂ BRA sample name	Sample porosity	Sample perm. (mD)	$S_{\rm wir}$	k_{rw}^{\max}	S _{CO2ir}	k_{rCO2}^{max}
	Lower Mt. Simon	Sandstone	Marginal marine	Bandera Brown A	0.164	124	0.566	1.00	0.00	0.320
	Cranfield	Sandstone	Deltaic complex fluvial	Castlegate	0.252	865	0.705	1.00	0.00	0.185
	Broom Creek	Sandstone	Aeolian	Navajo	0.156	41	0.497	1.00	0.00	0.271
	Middle Duperow	Carbonate, limestone	Shallow marine	Edwards Yellow	0.192	25	0.460	1.00	0.01	0.102
	Bass Island	Carbonate, dolomite	Shallow marine/reef	Silurian	0.129	327	0.453	1.00	0.10	0.032

CO₂BRA relative permeability for CO₂-brine drainage

SALINE METHODOLOGY EQUATIONS

$G_{CO_2} = A_t h_g \phi_t \rho E_{saline}$

Idealistic CO₂ mass stored in total pore volume

$E_{saline} = E_A E_h E_\phi E_V E_d$

- where E_A , E_h , and E_{ϕ} are the fraction of the geologic area, thickness, and porosity accessible for CO₂ storage, respectively;
- E_V is the volumetric displacement efficiency, represents the fraction of
- E_d is the microscopic displacement efficiency, is the fraction of water

Simulation-based E_V and E_d efficiency terms

$$E_{V} = \frac{V_{i}}{Ah\phi(1 - S_{w_{irr}})} = \frac{Q}{Ah\phi\rho(1 - S_{w_{irr}})}$$

 V_i , Q_i , t, $S_{w_{irr}}$ are volume of injected scCO₂; mass flowrate, injection time, and irreducible water saturation.

$$\boldsymbol{E_d} = 1 - S_{W_{ave}} = S_{CO_{2,o}}$$

 $S_{W_{ave}}$ and $S_{CO_{2ave}}$ are the average water and scCO₂ saturations within a CO₂ plume.

Log-odds Stochastic approach

Coupling CO₂BRA and TOUGH3 using a lookup table

Research & Innovation Center

E_V efficiency: reservoir scale E_d efficiency: pore scale

Minimum-area-circle approach to determine the accessible volume around the CO₂ injection well. The area of the dashed circle (A), enclosing the propagating CO_2 plume area (top view) is multiplied by the height (h of the plume (side view) to determine the accessible volume.

Cyan color: non-wetting invasion phase (scCO₂); White color: mobile wetting phase (brine); Blue color: trapped (irreducible and capillary bound) water.

Science & Engineering To Power Our Future