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• Fracture and fault network mapping plays a crucial role in ensuring the safety, security, and environmental 

sustainability of CO2 sequestration projects.

• Accurate fracture network mapping enables the identification of preferential flow paths for CO2 migration, 

understanding, which is essential in optimizing injection strategies and predicting CO2 evolution in a target 

reservoir.

• As part of currently ongoing efforts for the SMART Phase II, suite of machine learning algorithms have been 

utilized to quantify the temporal and spatial distributions of fracture networks at the CO2 injection site for the 
Illinois Basin – Decatur Project (IBDP).

Introduction

Data & Site Details
• IBDP is a carbon capture and storage (CCS) project of the Midwest geological sequestration consortium 

located in east-central Illinois in the north-central area of the Illinois Basin.

• Nearly 1 million tonnes of super critical CO2 were injected into the lower Mt. Simon Sandstone over a 3-year 

period from November 2011 until November 2014 at the IBDP site.

• For the current study, microseismic catalog recorded by the subsurface arrays from three separate wells at the 

IBDP site is utilized.

• Apart from microseismic, injection data, such as bottomhole pressure and CO2 flow rate is also incorporated 

in the current study.

Figure 1. Map showing the location of IBDP site (red dot) within the Illinois Basin (green shaded 

region).

Figure 2. Configuration of borehole and seismic monitoring network at the IBDP site.

Methods
• Magnitude of completeness and seismogenic b-value are estimated for the microseismic catalog to infer the 

dominant stress regime and failure mode of the recorded seismic events.

• Discrete microseismic time windows are identified from the variations in bottomhole pressure recording. 

• Concept of hydraulic diffusivity is utilized to identify discrete microseismic triggering fronts within each 

time window.

• A suite of unsupervised machine learning algorithms are tested to identify spatial clusters of microseismic 

events within each triggering front of individual time windows.

• 2-sigma standard deviational ellipsoids are fit to individual microseismic clusters that capture the spatial 

variation of event distribution in the respective cluster.

• Eigen vectors of the largest eigen value of each standard deviational ellipsoid is extracted to represent the 
trace of 3D distribution of fracture plane around the injection well.
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Figure 3. Map showing the spatial distribution of microseismic events at the IBDP site (center). Subplots 

showing (a) Magnitude of completeness, and (b-d) b-value variations for three separate regions.

Results

Workflow

Figure 4. Plots showing the comparison of cumulative pumping rate with (a) event count, (b) seismic 

energy, (c) seismic moment, and (d) joint variation of seismic moment and daily pumping rate (green bars).

Figure 5. Plots showing the variation in average downhole pressure. Nineteen microseismic time windows (shaded 

boxes) marked by extended period of bottomhole pressure changes.

Figure 6. Discrete triggering fronts (shaded rectangles) identified within each microseismic time window.  

Figure 7. Diagram showing the workflow of the current study for fracture network mapping.

Figure 8. Identified clusters of microseismic events within each triggering front of time window 17 (center plot).
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Figure 9. 3D distribution of fracture planes (shaded ellipsoids) around the injection well (red line) for time windows (a) 9, 

(b) 17, and (c) 19.
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Figure 10. (A) Previously identified fault plane solutions (green lines) for the microseismic clusters. (B) 3D distribution of 

fracture network (green lines) around the injection well as determined using machine learning techniques in the current study.
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