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Motivation _Models
d Model 2: convolution neural network (CNN)-multilayer o ate | ]
O Traditional full-physics reservoir simulations are computationally intensive, making real-time forecasting for forward and perceptron (MLP) in UNet architecture I
inverse modeling impractical. Machine learning (ML)-based surrogate models offer the potential for rapid predictions L Developed in Phase |l for IBDP dataset. T oo
while maintaining reasonable accuracy:. - Two separate models: [ S0 0901 || 1 Cbomedon] []
O The SMART project h ted a rich database f bles of i ties. Leveraging this database with " Pressure: Ful domain (125, 125, 110), o | [ e
e project has generated a rich database from ensembles of reservoir properties. Leveraging this database wi = CO, Saturation: Cropped domain (44, 40, 94). oy [ oot | T
ML algorithms can lead to powerful predictive tools that can efficiently capture complex reservoir dynamics. QO Train on 90 realizations and test on 10 realizations. e o A
d The goal is tailored to the Illinois Basin Decatur Project (IBDP) site, ensuring that the developed models are specific, 4 |ﬂPUti_ Permeability X, Y, and z; Porosity; z coordinate; - Y T
relevant, and capable of accurately predicting the evolution of CO, and pressure plumes for this particular reservoir. Injection rates and time. |
O Output: Spatial-temporal state variables.
_ Research Objectives — Results and Summary
1 Adapt the previously developed CNN-MLP model from SMART Phase | to ensure compatibility and optimal performance . _
with the IRDP dataset . The pressure prediction of both models are accurate. UNet model is better than CNN-MLP
O Develop the UNet models for predicting the dynamic evolution of CO, and pressure plumes J th)m sta(t)ulrat_lon prr]edllftflon ff both models need to be improved. The main errors happen at the values
. : 1 (l.e. ront).
d Apply both the adapted CNN-MLP and the newly developed U-Net models to the IBDP dataset, aiming for real-time aoou (1.e., shock front) o
forecasting of reservoir performance with improved accuracy. N - o)
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— Dat aS et MLP %i: g - % 4007 ;2?5[3-
Input data; 100 realizations. Dimension (126, 125, 110). Output state variables: 100 realization. | = S e
J First 80 with modifiers and last 20 without modifier.  Pressure and CO, saturation. Pressure HWERH m““ e
 Parameters:  Each simulation has 50 monthly time steps. e 1000 —
= Grid mesh: Coordinate x, y, and z; Grid volume. T o .
* Geological models: Permeability X, y, and z; Porosity. v o UNet 2
= Injection rate and time. o o ) i
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Left: With modifier; Right: Without modifier.
_Models " :
3 Model 1: convolution neural network (CNN)-multilayer perceptron | L[, L L eewwws 7 L e T e
(MLP) CARE -
O Developed in Phase | and adapted for IBDP dataset. — o — Acknowled gm ent
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