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Based on the simulation, we quantify the uncertain
reduction (UR) due to the simulated data obtained from
two monitoring locations (M1 and M2) | GroundTruth ~ Prior | . Ground Truth

» Point data assimilation and model update « Spatial data assimilation and model update

Prior and Posterior uncertainties computed with potential
1.0 data monitored at location M1
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CCS site monitoring phases and their primary monitoring objectives > T
* The goal of monitoring design is to evaluate the value of data,

(Yang et al., RAMP Software Design Basis Document)
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where the value of data is quantified by the amount of * Increased similarity between the updated model and the
uncertainty that is reduced in the prediction of CO, leakage. ground truth model with the increased number of
Monitoring Objectives: o age 5, e e el * Higher uncertainty reduction corresponds to higher value of data monitoring data from monitoring wells or seismic surveys.
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 The combination of P and S can address more uncertainty than
Adaptive monitoring design flowchart for development of a site monitoring plan individual P or S data set, while adding T to the combination of P
(Yang et al., RAMP Software Design Basis Document) and S cannot further reduce the uncertainty.

UQ based monitoring design Model updating and
— dynamic risk assessment
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Concordance?

» Demonstrated the effectiveness of the workflow for model
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